Bertrand Meyer
Mathai Joseph (Eds.)

Software Engiheering
Approaches for
Offshore and

Outsourced Development

First International Conference, SEAFOOD 2007
Zurich, Switzerland, February 2007
Revised Papers

LNCS 4716

@ Springer



Bertrand Meyer Mathai Joseph (Eds.)

Software Engineering
Approaches for

Offshore and
Outsourced Development

First International Conference, SEAFOOD 2007
Zurich, Switzerland, February 5-6, 2007
Revised Papers

@_ Springer



Volume Editors

Bertrand Meyer

ETH Zurich, Department of Computer Science

RZ Building, Clausiusstr. 59, 8092 Zurich, Switzerland
E-mail: bertrand.meyer @inf.ethz.ch

Mathai Joseph

Tata Consultancy Services

1 Mangaldas Road, Pune 411 001, India
E-mail: m.joseph@tcs.com

Library of Congress Control Number: 2007936130

CR Subject Classification (1998): D.2, K.6, K.4.2, J.1
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-75541-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75541-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9. 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12171392 06/3180 543210



Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4716



Preface

SEAFOOD for Thought

Headline-grabbing though it may be, the software industry’s large-scale alloca-
tion of work to developing countries has not so far generated much technical
analysis. Attention is usually limited to the possible political and economic con-
sequences, in particular the fears of loss of employment in the West. The aim of
the present volume is different. We recognize that offshore development is here
to stay, and not just a result of cost considerations. It is -~ more accurately — a
form of distributed development, relying on advances in communications to let
the software industry, in our globalized world, benefit from the wide distribution
of human talent. But it is also the source of a new set of challenges, to which
accepted software engineering principles and techniques have not completely
prepared us. Producing high-quality software on time and within budget is hard
enough when the QA team is across the aisle from the core developers, and the
customers across the street; what then when the bulk of the development team
is across an ocean or two?

The first SEAFOOD - Software Engineering Advances For Outsourced and
Offshore Development — conference (prompted by an earlier article!) was an at-
tempt not only to bring software engineering to outsourcing but also to bring
outsourcing into the collective consciousness of the software engineering com-
munity. This is beneficial to both sides: successful outsourcing requires strong
software engineering guidance, but research in the field must for its part account
for the new world of software development. Whatever direction outsourcing takes
in the coming years, we will never be just in one location any more.

SEAFOOD was held at ETH Zurich on 5-6 February 2007 and provided an
opportunity for participants from academia and industry to confront experiences,
ideas and proposals. The articles that follow are the result of this encounter. As
can be expected of the first conference in such a novel field, we are still in the
process of defining what constitutes a proper object of study on the topic; but
the contributions already show a number of promising developments, which we
are sure will be taken further in future conferences, starting from SEAFOOD
2008 to be held in the same venue in the first week of July 2008. The conference
site at http://seafood.ethz.ch includes information on this conference, as well as
past and future SEAFOOD events.

We hope that you will enjoy the results of SEAFOOD 2007 and that this vol-
ume will give you many useful ideas to understand and improve the engineering
of outsourced software.

! Bertrand Meyer: Offshore Development: The Unspoken Revolution in Software En-
gineering, IEEE Computer, January 2006, pages 124, 122-123.



VI Preface

Many people contributed to making SEAFOOD 2007 a success. We are par-
ticularly grateful to the authors who submitted their work in a new and quickly
evolving area; to the Program Committee members who reviewed the papers in
time and through sometimes extensive discussions. (We extend our special wishes
to Gio Wiederhold, who suffered an accident while in Zurich.) The role of Andrei
Voronkov’s excellent EasyChair conference system is gratefully acknowledged.

The conference benefited from four outstanding keynote presentations by
Krishnamurti Ananthkrishnan, Chief Technology Officer of Tata Consultancy
Services, Stuart Feldman, Vice President for computer science of IBM, Watts
Humphrey from the Software Engineering Institute and Andrey Terekhov, from
the State University of Saint Petersburg.

Martin Nordio from ETH played a key role in organizing the conference
and helping prepare this volume; we are also grateful to Claudia Giinthart for
outstanding organizational support and to Christian Hunziker from ELCA for
his work in publicizing the conference throughout Switzerland.

August 2008 Mathai Joseph
Bertrand Meyer



Organization

Program Co-chairs

Mathai Joseph, Tata Consultancy Services, India
Bertrand Meyer, ETH Zurich, Switzerland and Eiffel Software, California, USA

Program Committee

Manfred Broy, Technische Universitat Miinchen, Germany

Kokichi Futatsugi, JAIST, Japan

Victor Gergel University of Nizhnyi-Novgorod, Russia

Koichi Kishida, SRA Key-Tech Lab, Japan

Qiaoyun Li, Motorola, USA

Mingshu Li, Chinese Academy of Sciences, China

Andrey Terekhov, State University of Saint Petersburg and TEPKOM, Russia,
Gio Wiederhold, Stanford University, USA

Publicity Chair

Christian Hunziker, ELCA, Switzerland

Organizing Committee

Claudia Gunthart, ETH Zurich, Switzerland
Martin Nordio, ETH Zurich, Switzerland



Lecture Notes in Computer Science

Sublibrary 2: Programming and Software Engineering

For information about Vols. 1-4111
please contact your bookseller or Springer

Vol. 4764: P. Abrahamsson, N. Baddoo, T. Margaria,
R. Messnarz (Eds.), Software Process Improvement. XI,
225 pages. 2007.

Vol. 4758: F. Oquendo (Ed.), Software Architecture.
XVI, 340 pages. 2007.

Vol. 4757: E. Cappello, T. Herault, J. Dongarra (Eds.),
Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface. X VI, 396 pages. 2007.

Vol. 4753: E. Duval, R. Klamma, M. Wolpers (Eds.),
Creating New Learning Experiences on a Global Scale.
XII, 518 pages. 2007.

Vol. 4749: B.J. Krimer, K.-J. Lin, P. Narasimhan (Eds.),
Service-Oriented Computing — ICSOC 2007. XIX, 629
pages. 2007.

Vol. 4748: K. Wolter (Ed.), Formal Methods and Stochas-
tic Models for Performance Evaluation. X, 301 pages.
2007.

Vol. 4741: C. Bessiére (Ed.), Principles and Practice of
Constraint Programming — CP 2007. XV, 890 pages.
2007.

Vol. 4735: G. Engels, B. Opdyke, D.C. Schmidt, F. Weil
(Eds.), Model Driven Engineering Languages and Sys-
tems. XV, 698 pages. 2007.

Vol. 4716: B. Meyer, M. Joseph (Eds.), Software Engi-
neering Approaches for Offshore and Outsourced Devel-
opment. X, 201 pages. 2007.

Vol. 4680: F. Saglietti, N. Oster (Eds.), Computer Safety,
Reliability, and Security. XV, 548 pages. 2007.

Vol. 4670: V. Dahl, I. Niemeli (Eds.), Logic Program-
ming. XII, 470 pages. 2007.

Vol. 4652: D. Georgakopoulos, N. Ritter, B. Benatal-
lah, C. Zirpins, G. Feuerlicht, M. Schoenherr, H.R.
Motahari-Nezhad (Eds.), Service-Oriented Computing
ICSOC 2006. X VI, 201 pages. 2007.

Vol. 4634: H. Riis Nielson, G. Filé (Eds.), Static Analy-
sis. XI, 469 pages. 2007.

Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky
(Eds.), Architecting Dependable Systems IV. XIV, 435
pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Ermnst (Ed.), ECOOP 2007 — Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovi¢, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
XI, 375 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part III. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part I1. XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part I. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part ITI. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part II. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXITII, 1240 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.), Re-
quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4536: G. Concas, E. Damiani, M. Scotto, G. Succi
(Eds.), Agile Processes in Software Engineering and Ex-
treme Programming. XV, 276 pages. 2007.

Vol. 4530: D.H. Akehurst, R. Vogel, R.F. Paige (Eds.),
Model Driven Architecture - Foundations and Applica-
tions. X, 219 pages. 2007.

Vol. 4523: Y.-H. Lee, H.-N. Kim, J. Kim, Y.W. Park,
L.T. Yang, S.W. Kim (Eds.), Embedded Software and
Systems. XIX, 829 pages. 2007.

Vol. 4498: N. Abdennahder, F. Kordon (Eds.), Reliable
Software Technologies - Ada-Europe 2007. XII, 247
pages. 2007.

Vol. 4486: M. Bernardo, J. Hillston (Eds.), Formal Meth-
ods for Performance Evaluation. VII, 469 pages. 2007.

Vol. 4470: Q. Wang, D. Pfahl, D.M. Raffo (Eds.), Soft-
ware Process Dynamics and Agility. XI, 346 pages. 2007.

Vol. 4468: M.M. Bonsangue, E.B. Johnsen (Eds.), For-
mal Methods for Open Object-Based Distributed Sys-
tems. X, 317 pages. 2007.

Vol. 4467: A.L. Murphy, J. Vitek (Eds.), Coordination
Models and Languages. X, 325 pages. 2007.

Vol. 4454: Y. Gurevich, B. Meyer (Eds.), Tests and
Proofs. IX, 217 pages. 2007.



Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program
Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.

Vol. 4440: B. Liblit, Cooperative Bug Isolation. XV, 101
pages. 2007.

Vol. 4408: R. Choren, A. Garcia, H. Giese, H.-f. Leung,
C. Lucena, A. Romanovsky (Eds.), Software Engineer-
ing for Multi-Agent Systems V. XII, 233 pages. 2007.

Vol. 4406: W. De Meuter (Ed.), Advances in Smalltalk.
VII, 157 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4401: N. Guelfi, D. Buchs (Eds.), Rapid Integra-
tion of Software Engineering Techniques. IX, 177 pages.
2007.

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
XI, 355 pages. 2007.

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XTI, 235 pages. 2007.

Vol.4379: M. Siidholt, C. Consel (Eds.), Object-Oriented
Technology. VIII, 157 pages. 2007.

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4350: M. Clavel, F. Durén, S. Eker, P. Lincoln, N.
Marti-Oliet, J. Meseguer, C. Talcott, All About Maude
- A High-Performance Logical Framework. XXII, 797
pages. 2007.

Vol. 4348: S. Tucker Taft, R.A. Duff, R.L. Brukardt, E.
Plodereder, P. Leroy, Ada 2005 Reference Manual. XXII,
765 pages. 2006.

Vol. 4346: L. Brim, B. Haverkort, M. Leucker, J. van de
Pol (Eds.), Formal Methods: Applications and Technol-
ogy. X, 363 pages. 2007.

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2007.

Vol. 4336: V.R. Basili, D. Rombach, K. Schneider, B.
Kitchenham, D. Pfahl, R.W. Selby (Eds.), Empirical
Software Engineering Issues. XVII, 193 pages. 2007.

Vol. 4326: S. Gobel, R. Malkewitz, I. Turgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. XI, 269 pages. 2007.

Vol. 4322: F. Kordon, J. Sztipanovits (Eds.), Reliable
Systems on Unreliable Networked Platforms. XIV, 317
pages. 2007.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol. 4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4262: K. Havelund, M. Niifiez, G. Rosu, B. Wolff
(Eds.), Formal Approaches to Software Testing and Run-
time Verification. VIII, 255 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4242: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development II. IX, 289
pages. 2006.

Vol. 4229: E. Najm, J.-F. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.

Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative
Approaches for Learning and Knowledge Sharing. X VII,
721 pages. 2006.

Vol. 4218: S. Graf, W. Zhang (Eds.), Automated Tech-
nology for Verification and Analysis. XIV, 540 pages.
2006.

Vol. 4214: C. Hofmeister, I. Crnkovi¢, R. Reussner
(Eds.), Quality of Software Architectures. X, 215 pages.
2006.

Vol. 4204: F. Benhamou (Ed.), Principles and Practice of
Constraint Programming - CP 2006. XVIII, 774 pages.
2006.

Vol. 4199: O. Nierstrasz, J. Whittle, D. Harel, G. Reg-
gio (Eds.), Model Driven Engineering Languages and
Systems. XVI, 798 pages. 2006.

Vol. 4192: B. Mohr, J.L. Triff, J. Worringen, J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XVI, 414 pages. 2006.

Vol. 4184: M. Bravetti, M. Niiiez, G. Zavattaro (Eds.),
Web Services and Formal Methods. X, 289 pages. 2006.

Vol. 4166: J. Gérski (Ed.), Computer Safety, Reliability,
and Security. XIV, 440 pages. 2006.

Vol.4158: L.T. Yang, H. Jin, J. Ma, T. Ungerer (Eds.), Au-
tonomic and Trusted Computing. XIV, 613 pages. 2006.

Vol. 4157: M. Butler, C.B. Jones, A. Romanovsky, E.
Troubitsyna (Eds.), Rigorous Development of Complex
Fault-Tolerant Systems. X, 403 pages. 2006.

Vol.4143: R. Lammel, J. Saraiva, J. Visser (Eds.), Gener-
ative and Transformational Techniques in Software En-
gineering. X, 471 pages. 2006.

Vol. 4134: K. Yi (Ed.), Static Analysis. XIII, 443 pages.
2006.

Vol.4119: C. Dony, J.L. Knudsen, A. Romanovsky, A.R.
Tripathi (Eds.), Advanced Topics in Exception Handling
Techniques. X, 302 pages. 2006.



Table of Contents

Offshore Software Development: Transferring Research Findings into

the Classroom ........... e 1
Kay Berkling, Michael Geisser, Tobias Hildenbrand, and
Franz Rothlauf

Meeting the Challenge of Communication in Offshore Software
DevelopIment . .. ...t 19
Henrik Munkebo Christiansen

Testable Requirements for Offshore Outsourcing ..................... 27
Jean-Pierre Corriveau

Introducing Global Supply Chains into Software Engineering

FSANCATIOM  : « s 2 e rsm o mrmem s mmsssis Bl S is B mn ¢ aiieds Bl FRIAMG SEFAY 540 44
Olly Gotel, Vidya Kulkarni, Long Chrea Neak,
Christelle Scharff. and Sopheap Seng

Turn on Lean Governance... for Return on Outsourcing . .............. 59
Mohan Kancharla

Making IT Offshoring Work for the Japanese Industries............... 67
Sakura Kojima and Makoto Kojima

Mastering Dual-Shore Development — The Tools and Materials
Approach Adapted to Agile Offshoring. ....... ... .. ... ... ... ... 83
Andreas Kornstadt and Joachim Sauer

Evaluating Collaboration Platforms for Offshore Software Development
SCOMATIOS -+ . vt ettt ettt e e e e e e 96
Felix Rodriguez, Michael Geisser, Kay Berkling, and
Tobias Hildenbrand

Outsourcing and Offshoring: The Consultancies” Estimates ... ......... 109
Christian Sommer and Georg Trozler

Questionnaire-Based Risk Assessment Scheme for Japanese Offshore

Software OUtSOUTCING 55 5w s smsas smims smems snems sHsmrse sswsgmane s 114
Hiroshi Tsuji, Akito Sakurai, Ken'ichi Yoshida, Amrit Tiwana, and
Ashley Bush

An Evaluation Method for Offshore Software Development by
Structural Equation Modeling . ....... ... .. ... .. .. . .. 128
Yoshihisa Wada, Daiki Nakahigashi, and Hiroshi Tsuji



X Table of Contents

The Value of Outsourced Software ......... ... .. ... ... 141
Gio Wiederhold, Amar Gupta, Rajat Mittal, and Erich Neuhold

Reducing the Cost of Communication and Coordination in Distributed
Software Development . . ... ..ottt 152
Yunwen Ye, Kumiyo Nakakoji, and Yasuhiro Yamamoto

Survey on Japan-Oriented Offshore Software Development in China .... 170
Lei Zhang, Meiping Chai, Xuan Zhang, Shigeru Miyake, and
Ryota Mibe

Toward Visualization and Analysis of Traceability Relationships in

Distributed and Offshore Software Development Projects.............. 182
Cleidson R.B. de Souza, Tobias Hildenbrand, and David Redmiles

Author Index . . ... ... 201



Offshore Software Development:
Transferring Research Findings into the Classroom

Kay Berkling', Michael Geisser?, Tobias Hildenbrand®, and Franz Rothlauf®

" Caribbean Artificial Intelligence Group CAIG, Polytechnic University of Puerto Rico,
Electrical and Computer Engineering and Computer Science Department, 377 Ponce de Leon
Ave, Hato Rey, PR 00918, Puerto Rico
kay@berkling.com
2 Lehrstuhl fir ABWL und Wirtschaftsinformatik, Universitit Mannheim,

D-68131 Mannheim, Germany
{geisser,hildenbrand, rothlauf}@uni-mannheim.de

Abstract. Distributed software projects are becoming increasingly
commonplace in industry. Yet, software engineering education rarely graduates
students with the necessary skills and hands-on experience that are particular to
off-shore software development projects. Three key areas in successful off-
shore software development projects are well documented in the literature as
communication, knowledge management, as well as project and process
management. This paper maps tasks within each of these three areas to
functions that have to be provided by remote collaboration platforms and tools
that distributed projects rely on. A case-study of an off-shore requirements
engineering class experience between a Master course of Polytechnic
University of Puerto Rico and a customer in a Swiss financial institution shows
a correlation between areas of learning by the students and functionalities
covered with the tools used in the classroom. The paper identifies additional
tools, developed by the authors, which will provide additional functionalities in
the deficient areas to increase the learning and preparation of the students for
oft-shore software development projects.

Keywords: Offshore Software Development, Distributed and Global Software
Development, Software Engineering Education, Development Tools,
Collaborative Software Development, Requirements Engineering, Traceability.

1 Introduction

1.1 The Fundamental Problem of Global and Offshore Software Development

Software development projects have never been easy to manage or predict in terms of
cost, quality, or time to delivery. While a variety of methodologies exist to estimate
cost and manage projects, still far more than half of all IT projects “fail” because of
budget overruns, high maintenance costs or mismatch between desired and delivered
functionality [31]. Such failures can in part be attributed to non-standard processes
but are often due to inadequate communication between the parties involved [17].

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 1-18, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 K. Berkling et al.

In the last five years there has been a major increase in efforts to outsource
software development to offshore locations such as India, China or Russia in order to
cut the development costs [24]. According to Gartner, worldwide spending on
offshore research and development will increase by a factor of 9 to ultimately $12
billion by 2010 and application development services will reach expenditures of $50
billion dollar [23]. On paper, the savings for projects that can be outsourced to
economically advantageous locations look fabulous. The reality, however, is much
less documented and shows that the challenges already faced by local projects are
even enhanced by distance. The lack of effective communication due to distance,
culture and language issues may well cause damage to projects that outweigh any
potential savings of off-shoring development.

Computer science graduates who enter this global work environment are generally
ill-prepared for these aspects of their future job. Few computer science curricula
contain components to train their students in offshore development practices and
related special considerations [10,27]. Yet, experience and skills in IT Management of
global software development projects are essential to the success of offshore projects.

1.2 Objective and Methodology

The overall objective of this paper is twofold: First, the teaching methods used for
offshore development education we present shall be replicable and reusable in various
international university contexts. Second, by using methods and tools satisfying
realistic offshore requirements, our basic approach will eventually be transferable and
applicable in industry. Therefore, our work aims at making both a short-term and a
long-term contribution to the improvement of offshore software development (OSD)
practices: Through better education as well as methodological and tool support.

Analyses of the state-of-the-art in OSD practices, especially concerning software
engineering (SE) methods and tools applied, yield three major categories of problems
that need to be addressed — also in the classroom: communication, knowledge
management, as well as project and process management [14]. The authors propose a
combination of commonly used commercial and open source tools to provide the
supporting functionality to improve performance of offshore projects in each of these
three areas. Tools are chosen to be deployed in the classroom and support distributed
educational software projects within semi-commercial settings, i.e. with a real
customer. The classroom experience is designed to provide feedback with respect to
accomplishing learning objectives and measuring the usefulness of the proposed
supporting functionalities within real OSD scenarios.

The rest of this paper is organized as follows: Section 2 discusses current issues in
OSD and presents major requirements for tools to support these scenarios. Section 3
describes the teaching environment for a SE course that is used as a baseline for this
paper and outlines the deficiencies in this learning environment. Section 4 forms the
theoretical component of this paper, where the necessary functionalities for effective
OSD projects are evaluated and areas to be strengthened with additional tools are
identified. In Section 5, the missing functionalities are mapped to new tools that are
reviewed and their deployment in the classroom described in Section 6. Finally, the
paper closes with a review and description of necessary future work to evaluate the
success of the deployments.



Offshore Software Development: Transferring Research Findings into the Classroom 3

2 Offshore Software Development: Issues and Requirements

Within the field of SE, literature on OSD heavily relies on the findings within the
fields of distributed software development (DSD) and global software development
(GSD) respectively. Besides issues of physical distribution, OSD also takes people’s
different mindsets and cultures into account when analyzing methodology and
improvements in project management.

Herbsleb and Moitra [17] classify the problem classes most often encountered in
GSD and OSD projects as follows: (a) strategic issues, (b) cultural issues, (c)
inadequate communication, (d) knowledge management issues, (e) project and
process management issues, and (f) technical issues (for complementary analyses see
also [5, 15]).

Each one of these problem fields demands different approaches and tools. This
paper will not be primarily concerned with strategic and cultural issues due to the fact
that these problems may better be solved in business administration and social science
respectively. Problem classes (c¢) to (e) however require tool supported solutions and
are therefore our main focus — (f) in our opinion characterizes a cross-cutting concern
and is hence not analyzed separately. Each of the three areas described below overlap
somewhat. For example there is no project management without communication and
visualization of meta-data is important for all three categories. However, the
categories can be broadly separated as follows: Project and process management
issues correspond to coordination problems: e.g. synchronization and mutual
awareness in concurrent globally distributed processes [17]. Communication issues
pertain to a broader range of SE tasks, whereas knowledge management is the most
abstract problem class as regards the scope of activities affected.

2.1 Project and Process Management Issues

Process management is highly critical in distributed scenarios. Software process
coordination is mostly about the division of labor between distributed sites and
developers: Tasks can either be divided according to the code structure or different
development disciplines [29]. Either way, parallel concurrent processes have to be
managed carefully [17], while still guaranteeing process flexibility and integration of
different methods from the various sites [18].

As Requirements Engineering (RE) is the most critical phase in OSD [25], a
systematic proceeding will be needed to provide efficient client integration and
decision support for requirements selection even though physical meetings might not
always be possible [12].

Especially in OSD, roles are highly important to help the coordination of a large
number of developers [20]. A team member can take on one or more roles within a
single project and consequently can be a developer and later a tester, with duties
varying accordingly.

Empirical studies suggest that informal communication is a very important aspect
of coordinating teams in uncertain tasks such as software development [6, 20]. The
physical distance between sites makes it harder for distributed team members to



4 K. Berkling et al.

spontaneously and informally communicate with other team members in order to
coordinate their work [14]. This limitation within OSD implies fewer coordinating
interactions since developers find it more difficult to discern people’s current activity
and whether it is appropriate to interrupt them at a certain time [1]. It can also mean
that such developers encounter greater difficulties in coordinating OSD projects as a
result. Therefore, team awareness and process transparency are crucial for OSD.

Moreover, change management and impact analysis are particularly critical
coordination tasks in OSD. Distributed developers with different processes and tools
make it even more difficult to coordinate changes to the code base and prevent
conflicts [24]. Impact analysis, i.e. seeing the consequences of your changes in
advance, is also significantly harder in distributed settings such as OSD projects since
related artifacts are also most likely distributed over multiple sites [1].

Visualization and understanding of complex contexts, e.g. processes or artifact
dependencies, greatly support the project and process management by providing a
better view of the information.

2.2 Communication Issues

Software development is a very communication-intensive activity and issues raised of
an inadequate communication are even more complex in OSD [17]. As had been
mentioned before, distance introduces barriers to informal communication which
leads not only to coordination issues [5, 14]. It also makes it difficult to establish trust
and form relationships among distributed stakeholders [8].

Comparable to the problem of process integration, the integration of different
communication tools — synchronous and asynchronous — must also be seen as a major
issue in OSD. These tools need a well-defined interface because fuzzy interfaces will
mostly lead to inefficiencies and other technical problems [17].

Moreover, visualization and understanding of complex contexts, e.g. processes,
artifact dependencies, and social networks of developers, are often problematic as
well. However, these visualizations are critical to support formal, project-related
communication in order to make it more efficient. This issue is even more critical in
OSD arrangements since visualizations can help overcome language barriers [11].

2.3 Knowledge Management Issues

In addition to coordination and communication issues, general knowledge
management is vital to fully exploit the OSD potential [17]. In distributed projects,
the physical location of information artifacts such as source code, task descriptions, or
comments on changes, and the lack of “global knowledge™ about their existence make
traceability and rationale management an especially hard task in OSD [7].

Moreover, poor knowledge management leads to many missed reuse opportunities
that otherwise would have potentially saved lots of time and money [17]. Global
knowledge management (through visualization) is also critical in order to determine
the overall status of the project at any given time, e.g. critical paths of activity flows
and buffers among subsequent tasks [17].



Offshore Software Development: Transferring Research Findings into the Classroom 5

In GSD, in addition to documenting the various artifacts, updating and revising the
documentation is especially important since team-members are not all collocated. The
usage of visualization tools is only as useful as the information within the tools is
correctly updated. Automating such updates becomes particularly important. To
prevent assumptions and ambiguity and to support maintainability, documentation
must be current and reflect what various teams are using and working on [17].

3 Offshore Software Development in the Classroom

At Polytechnic University of Puerto Rico a recently established track in SE focuses on
student learning in OSD. The students participate in a series of related classes
including Software Engineering I (SEIl: Foundations in Software Engineering
Management and Methodology), Software Engineering II (SE2: Requirements
Management with offshore component), and Software Engineering III (SE3: Offshore
Software Development). In all cases, the emphasis is placed both on the project
management and development process as well as the effective use of supportive
technology and less on the quantity of project that was completed. This section
describes the course setup followed by the learning objectives that are aligned with
the issues identified in Section 2.

3.1 Classroom Scenarios

For the purpose of defining three types of classroom OSD scenarios, the division of
labor splits according to SE workflows based on the Rational Unified Process (RUP)
[21] into three tiers: Client (Business Idea), Intermediary (Requirements
Specification, Analysis, Design, Implementation at the prototype level, Configuration
and Change Management, Project Management), and Supplier (Implementation,
Environment, Testing). Client, Intermediary and Supplier are each situated in a
different location and time zone. The Client, in our case, is a single person from
industry who has a project idea and has to agree with the final product. The
Intermediary forms a buffer between client and supplier. This buffer has the function
of alleviating the work load on the client side, dampen cultural differences and
provide quality insurance. For the purpose of the classroom, the Intermediary takes on
two functions in separate semesters.

In SE2, the class takes on the task of analyzing and specifying the requirements of
the client in detail and building a prototype. In the second semester, the Intermediary
is responsible for defining the technology, designing the software architecture, and
overseeing the supplier class in building the entire project according to specifications.
The Supplier provides the implementation according to specifications of the
Intermediary. As a result of these high-level roles, two relationships can be emulated
in the classroom: between Client and Intermediary, and between Intermediary and
Supplier according to Figure 1. The split according to SE disciplines is described as
follows for SE2 and SE3:



6 K. Berkling et al.

Supplier

Fig. 1. Class roles include Client, Intermediary and Supplier. In SE1, these roles are collocated
within the same classroom to teach the fundamentals of SE projects. In SE2 (Offshore
Requirements Engineering) Client and Intermediary are located in different time zones. In SE3
(Offshore Implementation) Intermediary and Supplier are residing in different locations.

a) Requirements Engineering (between Client and Intermediary) in SE2

A client in a distant location poses the project idea in form of a short description of

one to two pages. Usually an official or unofficial industry partner plays the role of a

client. A typical profile of a client can be:

- Someone who does not have the resources to define and follow up on a project
but has a strong interest in seeing it developed further in order to have a detailed
specification and a prototype.

- A client who is training to become a manager for a global team and is supported
by the company in participating with the class as part of a training.

The class defines the project but additionally has to ensure that the client agrees
with the specifications.

b) Implementation (between Intermediary and Supplier) in SE3
The Intermediary and Supplier class pair takes on a project resulting from
collaboration between Client and Intermediary in order to specify the technology in
more detail. The Intermediary supervises the development in accordance with the
Client, where now all three (Client, Intermediary and Supplier) are situated in
different locations — but not all in different time zones. E.g. Puerto Rico and Chile are
in the same time and language zone which is exactly what makes this setup so
attractive. The supplier codes the project assignment according to the specification of
the intermediary and interacts with the intermediary only. A variation on this scenario
is a role reversal between the participating classes in order to emphasize
understanding of the entire process.



