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Preface

-

The development of surface physics and surface chemistry as a science is closely
related to the technical development of a number of methods involving electrons
either as an excitation source or as an emitted particle carrying characteristic
information. Many of these various kinds of electron spectroscopies have become
commercially available and have made their way into industrial laboratories. Others
are still in an early stage, but may become of increasing importance in the future.
In this book an assessment of the various merits and possible drawbacks of the
most frequently used electron spectroscopies is attempted. Emphasis is put on prac-
tical examples and experimental design rather than on theoretical considerations. The
book addresses itself to the reader who wishes to know which electron spectroscopy
or which combination of different electron spectroscopies he may choose for the
particular problems under investigation.

After a brief introduction the practical design of electron spectrometers and
their figures of merit important for the different applications are discussed in
Chapter 2. Chapter 3 deals with electron excited electron spectroscopies which are
used for the elemental analysis of surfaces. Structure analysis by electron diffrac-
tion is described in Chapter 4 with special emphasis on the use of electron diffrac-
tion for the investigation of surface imperfections. For the application of electron
diffraction to surface crystailography in general, the reader is referred to Volume 4
of "Topics in Applied Physics". Chapter 5 discusses phonon excited electron spectros-
copies and Chapter 6 is devoted to electron-loss spectroscopy. This technique has
found rather important appliications recently for the investigation both of electronic
transitions and surface vibrations.

Specific surface systems are discussed in Chapters 3 to 6; however, only in
connection with the experimental technique used and only insofar as the question
of the specific imformation provided by the technique is addressed. For further
details of the physical interpretation, the reader is referred to the literature.

It is hoped that this book may serve as a guide through the embarrassing number of
different electron spectroscopies that are in practical use.

Jilich, January 1977 H. Ibach
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1. Introduction
H. Ibach

With 2 Figures

1.1 Electron Spectroscopy and Its Importance in Surface Science

Modern technologies frequently make use of the interaction of gases and fluids with
solids and the properties of interfaces or thin films. Still our knowledge about
fundamental processes at surfaces and interfaces is rather limited. The great dif-
ficulties in the understanding of heterogeneous catalysis, corrosion protect%on,
semiconductor and thin-film technology have spurred many scientists to develop new
tools for the study of surfaces and to learn more about the chemical and physical
nature of the solid in its outermost atomic layers. Concurrently, the commercial
availability of surface analysis instruments and the mature stage of ultrahigh-
vacuum equipment in general is already beginning to have a major impact on further
progress of the applied sciences.

The use of ultrahigh vacuum is in general considered as an advantage since it
permits the investigation of surfaces under static and stable conditions. However,
for many questions of technical importance especially those in the field of catal-
ysis and corrosion, the high vacuum required by the surface analytical technique
itself may actually be a drawback. The availability of surface analytical tools
that operate while the surface is in contact with a liquid or high gas pressures
remains the major need in surface science. While such a technique would allow anal-
ysis of the surface under the conditions to which they are exposed in reality, the
present tools are limited to investigations under static low gas pressure condi-
tions. Possible major differences in composition and structure of surfaces under
these two conditions are the reason for a "credibility gap" between pure surface
science and applied technology.

Surface analytical tools mostly make use of particles such as photons, electrons,
atoms, molecules or ions. As in material science in general, the most valuable in-
formation is obtained by various kinds of spectroscopies. Surface spectroscopies,
however, encounter the difficult probiem of being selective to a rather small number
of surface atoms compared to bulk atoms. The natural way to circumvent this problem
is tc reduce the number of contributing bulk atoms by using particles.of appropriate
energy that probe only a few K into the solid. Still, separation between surface
and bulk properties may remain difficult.



Among the availabie particies for surface spectroscopies electrons as the car-
riers of the specific information have found by far the widest application for a
number of reasons:

[¢]
1) Electrons have an inelastic mean free path of a few A depending on the en-
ergy. Energy and momentum of an electron are therefore characteristic of elementa-

ry excitations near the surface.

2) Electrons are easily focused into beams and the energy may be varied by ap-
plying appropriate potentials.

3) Electrons are efficiently detected and counted.

4) Electrons may be analyzed with respect to angular and energy distribution
using electrostatic lenses and deflection systems.

5) Another major advantage of electrons which one comes to appreciate, if one
has ever worked with atoms, molecules, or ions as probing particles, is that elec-
trons disappear from the vacuum system after being used for the surface analysis.

Electrons offer a wide range of different spectroscopies with different type of in-
formation: surface structure, elemental composition, chemical bond and surface vi-
brations may be investigated on clean or gas-covered surfaces. Single crystal sur-
faces are, in general, not required however widely used in fundamentally oriented
studies. The various kinds of electron spectroscopies may be divided into two sub-
groups. In the first group of spectroscopies, the solid is excited by an electron
beam and either the backscattered electrons or secondary electrons are analyzed.

In the second group, electrons are generated by photon excitation. Other sources

of electron excitation are possible, however, but not in wide-spread use so far.

Although electrons have been so successfully applied in surface science and the
overwhelming part of our knowledge about surfaces stems from one or the other kind
of electron spectroscopy, it should not be concealed that the use of the electron
as the carrier of surface information has certain inherenc limitations.

As already mentioned, rather good high vacuum conditions are required for the
normal operation of the electron spectroscopic methods. Unfortunately this high
vacuum requirement makes electron spectroscopic studies of surfaces in technical
environments impossible. Even the analysis of such surfaces in situ after evacu-
ating the gas is of limited value as evacuation may change the surface condition.
Nevertheless this last variant is to be preferred to the transportation of the sur-
face in air. The requirement of good vacuum is automatically overfulfilled in fun-
damental surface studies because in this case the partial pressure of reactive gas-
es as hydrogen, oxygen, carbon monoxide, and nitrogen must be kept at least in the
Tow 10'10 mbar range. Because of the much lower sticking coefficient, 10'9 mbar may
be tolerated for clean semiconductor surfaces.

Another limitation arises from the fact that electron spectroscopies are in ge-
neral not nondestructive. This holds especially for those spectroscopies where e-



lectron beams of high current are used as a primary source of excitation. The ex-
citation or ionization of the surface atoms of the substrate and of adsorbed mole-
cules or atoms provides enough energy for dissociation, desorption, and chemical
reactions. Cross sections for electron-stimulated desorption of absorbed gases range
from 10712
been found for adsorbed halides, which are therefore rather difficult to detect by

cm? down to unmeasurable small values [1.1]. The highest values have

electron spectroscopies. Smaller values in the 10'18 cm2 range and below apply to
more stable adsorption systems. These are sufficiently low to allow an electron-
beam excited surface analysis, provided that one works with a moderately focused beam.
Highly focused beams of a few microns diameter as used, for instance, in scanning
Auger spectroscopy still may cause problems and one has to check for electron stim-
ulated desorption effects on any particular system under investigation. Only for
substrate atoms, electron-stimulated desorption may be neglected. In addition to
electron-stimulated desorption, the electron beam may cause surface chemical reac-
tions. Frequently a cracking of hydrocarbons and carbon monoxide adsorbed on the
surface is observed. Light products may desorb and carbonaceous layers are deposited
on the surface. Carbon deposition may proceed at a rather rapid rate in poor vacuum.

Another source of continuous concern and confusion is the information depth of
electron spectroscopies, i.e., the thickness of the surface layer that is actually
probed in the particular experiment. The information depth depends on the electron
energy and the material; in some cases it is even difficult to define what one may
consider as the information depth. This mest important question warrants a more de-
tailed discussion which is given in the next paragraph. In any case electron spec-
troscopies are tools for a true surface analysis only in a limited sense. Even the
smallest obtainable information depth of about 5 X is sufficiedtly high so that not
only true surface properties but also properties of bulk atoms are investigated si-
multaneously. This causes the problem of discriminating between properties of sur-
face atoms and bulk atoms for which a general solution has not yet been found. For
adsorbate systems one may consider the difference between the clean and the adsor-
bate-covered surface as being the property of the adsorbate layer. For the investi-
gation of the properties of surface substrate atoms, no such method exists. Sub-
stantial confusion may arise from this fact, especially in alloy substrates where
the chemical composition of the surface layer may be different from the second and
deeper lavers. Surface analytical techniques other than electron spectroscopies
(e.g., ion backscattering) should be used to solve such questions.



1.2 The Information Depth

For most electron spectroscopies (with a few exceptions) the characteristic surface
information is contained in the energy E and momentum k of the electron escaping
the material. Therefore the information is lost after elastic or inelastic scatter-
ing events that the eiectron may encounter on its way between the point where it
was generated and the surface. Inelastic scattering processes arise from electron-
electron or electron-phonon interactions. With the present experimental resolution
the energy loss in electron-phonon scattering is negligibly small. Large-angle
phonon scattering events that would affect fhe angular distribution have a rela-
tively small cross section corresponding to a mean free path of several hundred R
and are therefore not considered in the following.

For bulk material the inelastic scattering probability is proportional to the
path length in the solid. The flux of electrons of certain energy and momentum,

therefore, decays exponentially

_ =X/A
I= I0 e (1<1)
where A is the mean free path of the electron. The mean free path is inversely pro-
portional to the imaginary part of the electron self-energy [ 1.2,3 ] which may be
calculated from the dielectric response function 1/¢{q,w)

1 me2 1 1 (max -1
1 o ?ﬁEJ 5 da 7[ duw Imh-_yE — ] 0(E-E_. -Nw) (1.2)
0

with E the energy of the electron and q and hw the momentum transfer and energy
invelved in a transition, respectively. Emin is the Fermi energy or the conduction
band edge £_ in case of an insulator. The step function & and the upper integration

¢
limit
h 2
“max = Zm [k-(k-0) )

takes care of energy conservation. As the response function represents the electro-
nic excitation spectrum of the solid which is different for different materials, the
mean free path of the electron depends on the material under investigation. For an
insulator, for example, Im[-1/¢(q,w)] becomes considerable only when hw exceeds

the band-gap energy Eg. Because ?g energy conservation (the 8 function in ﬁl.Z))

the electronic contribution to A ~ becomes rather small for electron energies
E<EC+Eg (dashed line in Fig.1.1d). Impurity scattering may set a lower limit,

Thus for low electron energies the mean free path for an insulator is much higher

than for a metal.



