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Preface

This volume discusses a construction situated at the intersection of two differ-
ent mathematical fields: Abstract harmonic analysis, understood as the theory
of group representations and their decomposition into irreducibles on the one
hand, and wavelet (and related) transforms on the other. In a sense the volume
reexamines one of the roots of wavelet analysis: The paper [60] by Grossmann,
Morlet and Paul may be considered as one of the initial sources of wavelet
theory, yet it deals with a unitary representation of the affine group, citing
results on discrete series representations of nonunimodular groups due to Du-
flo and Moore. It was also observed in [60] that the discrete series setting
provided a unified approach to wavelet as well as other related transforms,
such as the windowed Fourier transform.

We consider generalizations of these transforms, based on a representation-
theoretic construction. The construction of continuous and discrete wavelet
transforms, and their many relatives which have been studied in the past
twenty years, involves the following steps: Pick a suitable basic element (the
wavelet) in a Hilbert space, and construct a system of vectors from it by the
action of certain prescribed operators on the basic element, with the aim of
expanding arbitrary elements of the Hilbert space in this system. The associ-
ated wavelet transform is the map which assigns each element of the Hilbert
space its expansion coefficients, i.e. the family of scalar products with all el-
ements of the system. A wavelet inversion formula allows the reconstruction
of an element from its expansion coefficients.

Continuous wavelet transforms, as studied in the current volume, are ob-
tained through the action of a group via a unitary representation. Wavelet in-
version is achieved by integration against the left Haar measure of the group.
The key questions that are treated —and solved to a large extent— by means
of abstract harmonic analysis are: Which representations can be used? Which
vectors can serve as wavelets?

The representation-theoretic formulation focusses on one aspect of wavelet
theory, the inversion formula, with the aim of developing general criteria and
providing a more complete understanding. Many other aspects that have made
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wavelets such a popular tool, such as discretization with fast algorithms and
the many ensuing connections and applications to signal and image processing,
or, on the more theoretical side, the use of wavelets for the characterization
of large classes of function spaces such as Besov spaces, are lost when we
move on to the more general context which is considered here. One of the
reasons for this is that these aspects often depend on a specific realization
of a representation, whereas abstract harmonic analysis does not differentiate
between unitarily equivalent representations.

In view of these shortcomings there is a certain need to justify the use of
techniques such as direct integrals, entailing a fair amount of technical detail,
for the solution of problems which in concrete settings are often amenable to
more direct approaches. Several reasons could be given: First of all, the in-
version formula is a crucial aspect of wavelet and Gabor analysis. Analogous
formulae have been — and are being — constructed for a wide variety of set-
tings, some with, some without a group-theoretic background. The techniques
developed in the current volume provide a systematic, unified and powerful
approach which for type I groups yields a complete description of the possible
choices of representations and vectors. As the discussion in Chapter 5 shows,
many of the existing criteria for wavelets in higher dimensions, but also for
Gabor systems, are covered by the approach.

Secondly, Plancherel theory provides an attractive theoretical context
which allows the unified treatment of related problems. In this respect, my
prime example is the discretization and sampling of continuous transforms.
The analogy to real Fourier analysis suggests to look for nonabelian versions
of Shannon’s sampling theorem, and the discussion of the Heisenberg group
in Chapter 6 shows that this intuition can be made to work at least in special
cases. The proofs for the results of Chapter 6 rely on a combination of direct
integral theory and the theory of Weyl-Heisenberg frames. Thus the connec-
tion between wavelet transforms and the Plancherel formula can serve as a
source of new problems, techniques and results in representation theory.

The third reason is that the connection between the initial problem of char-
acterizing wavelet transforms on one side and the Plancherel formula on the
other is beneficial also for the development and understanding of Plancherel
theory. Despite the close connection, the answers to the above key questions
require more than the straightforward application of known results. It was
necessary to prove new results in Plancherel theory, most notably a precise
description of the scope of the pointwise inversion formula. In the nonuni-
modular case, the Plancherel formula is obscured by the formal dimension
operators, a family of unbounded operators needed to make the formula work.
As we will see, these operators are intimately related to admissibility con-
ditions characterizing the possible wavelets, and the fact that the operators
are unbounded has rather surprising consequences for the existence of such
vectors. Hence, the drawback of having to deal with unbounded operators,
incurring the necessity to check domains, turns into an asset.
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Finally the study of admissibility conditions and wavelet-type inversion
formulae offers an excellent opportunity for getting acquainted with the
Plancherel formula for locally compact groups. My own experience may serve
as an illustration to this remark. The main part of the current is concerned
with the question how Plancherel theory can be employed to derive admissibil-
ity criteria. This way of putting it suggests a fixed hierarchy: First comes the
general theory, and the concrete problem is solved by applying it. However,
for me a full understanding of the Plancherel formula on the one hand, and
of its relations to admissibility criteria on the other, developed concurrently
rather than consecutively. The exposition tries to reproduce this to some ex-
tent. Thus the volume can be read as a problem-driven — and reasonably
self-contained— introduction to the Plancherel formula.

As the volume connects two different fields, it is intended to be open to re-
searchers from both of them. The emphasis is clearly on representation theory.
The role of group theory in constructing the continuous wavelet transform or
the windowed Fourier transform is a standard issue found in many introduc-
tory texts on wavelets or time-frequency analysis, and the text is intended
to be accessible to anyone with an interest in these aspects. Naturally more
sophisticated techniques are required as the text progresses, but these are
explained and motivated in the light of the initial problems, which are exis-
tence and characterization of admissible vectors. Also, a number of well-known
examples, such as the windowed Fourier transform or wavelet transforms con-
structed from semidirect products, keep reappearing to provide illustration
to the general results. Specifically the Heisenberg group will occur in various
roles.

A further group of potential readers are mathematical physicists with an
interest in generalized coherent states and their construction via group repre-
sentations. In a sense the current volume may be regarded as a complement to
the book by Ali, Antoine and Gazeau [1]: Both texts consider generalizations
to the discrete series case. [1] replaces the square-integrability requirement by
a weaker condition, but mostly stays within the realm of irreducible represen-
tations, whereas the current volume investigates the irreducibility condition.
Note however that we do not comment on the relevance of the results pre-
sented here to mathematical physics, simply for lack of competence.

In any case it is only assumed that the reader knows the basics of locally
compact groups and their representation theory. The exposition is largely self-
contained, though for known results usually only references are given. The
somewhat introductory Chapter 2 can be understood using only basic notions
from group theory, with the addition of a few results from functional and
Fourier analysis which are also explained in the text. The more sophisticated
tools, such as direct integrals, the Plancherel formula or the Mackey machine,
are introduced in the text, though mostly by citation and somewhat concisely.
In order to accomodate readers of varying backgrounds, I have marked some
of the sections and subsections according to their relation to the core material
of the text. The core material is the study of admissibility conditions, dis-
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cretization and sampling of the transforms. Sections and subsections with the
superscript * contain predominantly technical results and arguments which
are indispensable for a rigorous proof, but not necessarily for an understand-
ing and assessment of results belonging to the core material. Sections and
subsections marked with a superscript ** contain results which may be con-
sidered diversions, and usually require more facts from representation theory
than we can present in the current volume. The marks are intended to provide
some orientation and should not be taken too literally; it goes without saying
that distinctions of this kind are subjective.

Acknowledgements. The current volume was developed from the papers [52,
53, 4], and I am first and foremost indebted to my coauthors, which are in
chronological order: Matthias Mayer, Twareque Ali and Anna Krasowska. The
results in Section 2.7 were developed with Keith Taylor.

Volkmar Liebscher, Markus Neuhauser and Olaf Wittich read parts of the
manuscript and made many useful suggestions and corrections. Needless to
say, I blame all remaining mistakes, typos etc. on them.

In addition, I owe numerous ideas, references, hints etc. to Jean-Pierre
Antoine, Larry Baggett, Hans Feichtinger, Karlheinz Grochenig, Rolf Wim
Henrichs, Rupert Lasser, Michael Lindner, Wally Madych, Arlan Ramsay,
Giinter Schlichting, Bruno Torrésani, Guido Weiss, Edward Wilson, Gerhard
Winkler and Piotr WojdyHo.

I would also like to acknowledge the support of the Institute of Biomathe-
matics and Biometry at GSF National Research Center for Environment and
Health, Neuherberg, where these lecture notes were written, as well as addi-
tional funding by the EU Research and Training Network Harmonic Analysis
and Statistics in Signal and Image Processing (HASSIP).

Finally, I would like to thank Marina Reizakis at Springer, as well as the
editors of the Lecture Notes series, for their patience and cooperation. Thanks
are also due to the referees for their constructive criticism.

Neuherberg, December 5, 200/ Hartmut Fihr
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1

Introduction

1.1 The Point of Departure

In one of the papers initiating the study of the continuous wavelet trans-
form on the real line, Grossmann, Morlet and Paul [60] considered systems
(¥b,a)b.acrxr arising from a single function ¢ € L2(R) via

z—0b
Una(@) = la| ™%y ( >
a
They showed that every function ¢ fulfilling the admissibility condition

[ (w)|?

R |l

dw=1, (1.1)

where R’ = R\ {0}, gives rise to an inversion formula

d
£= [ [ ftnanaran (12)

to be read in the weak sense. An equivalent formulation of this fact is that
the wavelet transform

feVof  Vyf(ba) = (f ¥oa)

is an isometry L?(R) — L2(R x R/, dbl%‘ll’)' As a matter of fact, the inversion
formula was already known to Calderdn [27], and its proof is a more or less
elementary exercise in Fourier analysis.

However, the admissibility condition as well as the choice of the measure
used in the reconstruction appear to be somewhat obscure until read in group-
theoretic terms. The relation to groups was pointed out in [60] —and in fact
earlier in [16]-, where it was noted that v, , = m(b,a)¥, for a certain repre-
sentation 7 of the affine group G of the real line. Moreover, (1.1) and (1.2)
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have natural group-theoretic interpretations as well. For instance, the measure
used for reconstruction is just the left Haar measure on G.

Hence, the wavelet transform is seen to be a special instance of the fol-
lowing construction: Given a (strongly continuous, unitary) representation
(m,Hx) of a locally compact group G and a vector n € H,, we define the
coefficient operator

Vo : He 3 91 Vap € Go(G) , Voul(@) = (o (@) -

Here Cy(G) denotes the space of bounded continuous functions on G.

We are however mainly interested in inversion formulae, hence we consider
V, as an operator H, — L?(G), with the obvious domain dom(V}) = {p €
Hx : Vyp € L2(G)}. We call  admissible whenever V,, : H — L?(G) is an
isometric embedding, and in this case V; is called (generalized) wavelet
transform. While the definition itself is rather simple, the problem of identi-
fying admissible vectors is highly nontrivial, and the question whether these
vectors exist for a given representation does not have a simple general answer.
It is the main purpose of this book to develop in a systematical fashion criteria
to deal with both problems.

As pointed out in [60], the construction principle for wavelet transforms
had also been studied in mathematical physics, where admissible vectors n
are called fiducial vectors, systems of the type {m(z)n : * € G} coherent
state systems, and the corresponding inversion formulae resolutions of
the identity; see [1, 73] for more details and references.

Here the earliest and most prominent examples were the original coherent
states obtained by time-frequency shifts of the Gaussian, which were studied
in quantum optics [114]. Perelomov [97] discussed the existence of resolutions
of the identity in more generality, restricting attention to irreducible repre-
sentations of unimodular groups. In this setting discrete series representa-
tions, i.e., irreducible subrepresentations of the regular representation A\g of
G turned out to be the right choice. Here every nonzero vector is admissible
up to normalization. Moreover, Perelomov devised a construction which gives
rise to resolutions of the identity for a large class of irreducible representations
which were not in the discrete series. The idea behind this construction was
to replace the group as integration domain by a well-chosen quotient, i.e., to
construct isometries H, — L?(G/H) for a suitable closed subgroup H. In all
of these constructions, irreducibility was essential: Only the well-definedness
and a suitable intertwining property needed to be proved, and Schur’s lemma
would provide for the isometry property.

While we already remarked that [60] was not the first source to comment on
the role of the affine group in constructing inversion formulae, suitably general
criteria for nonunimodular groups were missing up to this point. Grossmann,
Morlet and Paul showed how to use the orthogonality relations, established for
these groups by Duflo and Moore [38], for the characterization of admissible
vectors. More precisely, Duflo and Moore proved the existence of a uniquely
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defined unbounded selfadjoint operator C; associated to a discrete series rep-
resentation such that a vector 7 is admissible iff it is contained in the domain
of Cr, with ||Crn|| = 1. A second look at the admissibility condition (1.1)
shows that in the case of the wavelet transform on L?(R) this operator is
given on the Plancherel transform side by multiplication with |w|~!/2. This
framework allowed to construct analogous transforms in a variety of settings,
which was to become an active area of research in the subsequent years; a by
no means complete list of references is [93, 22, 25, 48, 68, 49, 50, 51, 83, 7, §].
See also [1] and the references therein.

However, it soon became apparent that admissible vectors exist outside
the discrete series setting. In 1992, Mallat and Zhong [92] constructed a
transform related to the original continuous wavelet transform, called the
dyadic wavelet transform. Starting from a function ¢ € L2(R) satisfying
the dyadic admissibility condition

Z |”¢Z(2"w)|2 =1, for almost every w € R (1.3)
nez

one obtains the (weak-sense) inversion formula

/= /Rzg’wh,?")wbz"?_"db , (1.4)

neZL

or equivalently, an isometric dyadic wavelet transform L?(R) — L?(R x
Z,db2~"dn), where dn denotes counting measure. Clearly the representation
behind this transform is just the restriction of the above representation 7 to
the closed subgroup H = {(b,2") : b € R,n € Z} of G, and the measure under-
lying the dyadic inversion formula is the left Haar measure of that subgroup.
However, in one respect the new transform is fundamentally different: The
restriction of 7w to H is no longer irreducible, in fact, it does not even contain
irreducible subrepresentations (see Example 2.36 for details). Therefore (1.3)
and (1.4), for all the apparent similarity to (1.1) and (1.2), cannot be treated
in the same discrete series framework.

The example by Mallat and Zhong, together with results due to Klauder,
Isham and Streater [67, 74], was the starting point for the work presented in
this book. In each of these papers, a more or less straightforward construction
led to admissibility conditions — similar to (1.1) and (1.3) — for representa-
tions which could not be dealt with by means of the usual discrete series
arguments. The initial motivation was to understand these examples under a
representation-theoretic perspective, with a view to providing a general strat-
egy for the systematic construction of wavelet transforms.

The book departs from a few basic realizations: Any wavelet transform
V}, is a unitary equivalence between 7 and a subrepresentation of A\g, the left
regular representation of G on L?(G). Hence, the Plancherel decomposi-
tion of the latter into a direct integral of irreducible representations should



4 1 Introduction

play a central role in the study of admissible vectors, as it allows to analyze
invariant subspaces and intertwining operators.

A first hint towards direct integrals had been given by the representations
in [67, 74], which were constructed as direct integrals of irreducible repre-
sentations. However, the particular choice of the underlying measure was not
motivated, and it was unclear to what extent these constructions and the asso-
ciated admissibility conditions could be generalized to other groups. Properly
read, the paper by Carey [29] on reproducing kernel subspaces of L?(G) can be
seen as a first source discussing the role of Plancherel measure in this context.

1.2 Overview of the Book

The contents of the remaining chapters may be roughly summarized as follows:

2. Introduction to the group-theoretic approach to the construction of con-
tinuous wavelet transforms. Embedding the discussion into L?(G). Formu-
lation of a list of tasks to be solved for general groups. Solution of these
problems for the toy example G = R.

3. Introduction to the Plancherel transform for type I groups, and to the
necessary representation-theoretic machinery.

4. Plancherel inversion and admissibility conditions for type I groups. Exis-
tence and characterization of admissible vectors for this setting.

5. Examples of admissibility conditions in concrete settings, in particular for
quasiregular representations.

6. Sampling theory on the Heisenberg group.

Chapter 2 is concerned with the collection of basic notions and results,
concerning coefficient operators, inversion formulae and their relation to con-
volution and the regular representations. In this chapter we formulate the
problems which we intend to address (with varying degrees of generality) in
the subsequent chapters. We consider existence and characterization of in-
version formulae, the associated reproducing kernel subspaces of L?(G) and
their properties, and the connection to discretization of the continuous trans-
forms and sampling theorems on the group. Support properties of the arising
coefficient functions are also an issue. Section 2.7 is crucial for the following
parts: It discusses the solution of the previously formulated list of problems
for the special case G = R. It turns out that the questions mostly translate
to elementary problems in real Fourier analysis.

Chapter 3 provides the ” Fourier transform side” for locally compact groups
of type I. The Fourier transform of such groups is obtained by integrating func-
tions against irreducible representations. The challenge for Plancherel theory
is to construct from this a unitary operator from L?(G) onto a suitable di-
rect integral space. This problem may be seen as analogous to the case of
the reals, where the tasks consists in showing that the Fourier transform
defined on L'(R) induces a unitary operator L?(R) — L?(R). However, for
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arbitrary locally compact groups the right hand side first needs to be con-
structed, which involves a fair amount of technique. The exposition starts
from a representation-theoretic discussion of the toy example, and during the
exposition to follow we refer repeatedly to this initial example.

Chapter 4 contains a complete solution of the existence and character-
ization of admissible vectors, at least for type I groups and up to unitary
equivalence. The technique is a suitable adaptation of the Fourier arguments
used for the toy example. It relies on a pointwise Plancherel inversion for-
mula, which in this generality has not been previously established. In the
course of argument we derive new results concerning the Fourier algebra and
Fourier inversion on type I locally compact groups, as well as an L2-version of
the convolution theorem, which allows a precise description of L2-convolution
operators, including domains, on the Plancherel transform side 4.18. We com-
ment on an interpretation of the support properties obtained in Chapter 2 in
connection with the so-called ”qualitative uncertainty principle”. Using ex-
istence and uniqueness properties of direct integral decompositions, we then
describe a general procedure how to establish the existence and criteria for
admissible vectors (Remark 4.30). We also show that these criteria in effect
characterize the Plancherel measure, at least for unimodular groups. Section
4.5 shows how the Plancherel transform view allows a unified treatment of
wavelet and Wigner transforms associated to nilpotent Lie groups.

Chapter 5 shows how to put the representation-theoretic machinery de-
veloped in the previous chapters to work on a much-studied class of con-
crete representations, thereby considerably generalizing the existing results
and providing additional theoretic background. We discuss semidirect prod-
ucts of the type R¥ x H, with suitable matrix groups H. These constructions
have received considerable attention in the past. However, the representation-
theoretic results derived in the previous chapters allow to study generaliza-
tions, e.g. groups of the sort N x H, where N is a homogeneous Lie group
and H is a one-parameter group of dilations on N. The discussion of the Zak-
transform in the context of Weyl-Heisenberg frames gives further evidence for
the scope of the general representation-theoretic approach.

The final chapter contains a discussion of sampling theorems on the Heisen-
berg group H. We obtain a complete characterization of the closed leftinvari-
ant subspaces of L?(H) possessing a sampling expansion with respect to a
lattice. Crucial tools for the proof of these results are provided by the theory
of Weyl-Heisenberg frames.

1.3 Preliminaries

In this section we recall the basic notions of representation theory, as far
as they are needed in the following chapter. For results from representation
theory, the books by Folland [45] and Dixmier [35] will serve as standard
references.
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The most important standing assumptions are that all locally compact

groups in this book are assumed to be Hausdorff and second countable and all
Hilbert spaces in this book are assumed to be separable.

Hilbert Spaces and Operators

Given a Hilbert space H, the space of bounded operators on it is denoted by
B(H), and the operator norm by || - [|~. U(H) denotes the group of unitary
operators on H. Besides the norm topology, there exist several topologies of
interest on B(H). Here we mention the strong operator topology as the
coarsest topology making all mappings of the form

BH)>T—TneH ,

with 17 € H arbitrary, continuous, and the weak operator topology, which
is the coarsest topology for which all coefficient mappings

B(H)>Tw— (p,Tn) € C,

with ¢, € H arbitrary, are continuous. Furthermore, let the ultraweak
topology denote the coarsest topology for which all mappings

3(7{)9 T +— j{:<¢n77WﬁJ

neN

are continuous. Here (1, )nen and (¢ )nen range over all families fulfilling

Z||77n||2<00 ) Z”W'n||2<0° :

neN neN

We use the abbreviations ONB and ONS for orthonormal bases and
orthonormal systems, respectively. dim(H) denotes the Hilbert space dimen-
sion, i.e., the cardinality of an arbitrary ONB of H. Another abbreviation is
the word projection, which in this book always refers to selfadjoint projec-
tion operators on a Hilbert space. For separable Hilbert spaces, the Hilbert
space dimension is in NU {oo}, where the latter denotes the countably infi-
nite cardinal. The standard index set of cardinality m (wherever needed) is
I, ={1,...,m}, where I, = N, and the standard Hilbert space of dimension
m is €2(I,,).

If (Hi)ier is a family of Hilbert spaces, then @, ; H; is the space of vectors
(¢i)ier in the cartesian product fulfilling in addition

I(e)ierll* ==Y lloill® < o0

iel

The norm thus defined on €,_; H; is a Hilbert space norm, and @,.; H, is
complete with respect to the norm. If the H; are orthogonal subspaces of a
common Hilbert space H, @,.; H; is canonically identified with the closed
subspace generated by the union of the H,.

If T is a densely defined operator on ‘H which has a bounded extension,
we denote the extension by [T7.
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Unitary Representations

A unitary, strongly continuous representation, or simply representa-
tion, of a locally compact group G is a group homomorphism 7 : G — U(H)
that is continuous, when the right hand side is endowed with the strong op-
erator topology. Since weak and strong operator topology coincide on U(H),
the continuity requirement is equivalent to the condition that all coefficient
functions of the type

Gz (p,m(x)n) €C,

are continuous.

Given representations o, m, and operator T' : H, — H, is called inter-
twining operator, if To(z) = 7(z)T holds, for all z € G. We write 0 ~ 7
if o and 7 are unitarily equivalent, which means that there is a unitary in-
tertwining operator U : H, — H . It is elementary to check that this defines
an equivalence relation between representations. For any subset K C H, we
let

T(G)K ={n(z)n: 2 € Gine K} .

A subspace of K C H, is called invariant if 7(G)K C K. Orthogonal comple-
ments of invariant subspaces are invariant also. Restriction of a representation
to invariant subspaces gives rise to subrepresentations. We write o < 7 if
o is unitarily equivalent to a subrepresentation of 7. o and 7 are called dis-
joint if there is no nonzero intertwining operator in either direction. A vector
1 € Hx is called cyclic if 7(G)n spans a dense subspace of H,.. A cyclic rep-
resentation is a representation having a cyclic vector. All representations
of interest to us are cyclic. In particular our standing assumption that G is
second countable implies that all representations occurring in the book are
realized on separable Hilbert spaces. 7 is called irreducible if every nonzero
vector is cyclic, or equivalently, if the only closed invariant subspaces of H;,
are {0} and H,. Given a family (7;)ics, the direct sum 7 = @, ., 7; acts on
Dic; Hr, via
m(x) (‘P'i)iel = (ﬂi(m)‘fgi)ie]

The main result in connection with irreducible representations is Schur’s
lemma characterizing irreducibility in terms of intertwining operators. See [45,
3.5] for a proof.

Lemma 1.1. If m, ™ are irreducible representations, then the space of in-
tertwining operators between m and wo has dimension 1 or 0, depending on
T =~ T or not.

In other words, m1 and 7y are either equivalent or disjoint.

Using the spectral theorem the following generalization can be shown. The
proof can be found in [66, 1.2.15].
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Lemma 1.2. Let m,m be representations of G, and let T' : Hy, — Hx, be
a closed intertwining operator, defined on a dense subspace D C Hr,. Then
ImT and (kerT)* are invariant subspaces and my, restricted to (kerT)*:, is
unitarily equivalent to the restriction of m to ImT).

If, moreover, m is irreducible, T' is a multiple of an isometry.

Given G, the unitary dual G denotes the equivalence classes of irreducible
representations of G. Whenever this is convenient, we assume the existence
of a fixed choice of representatives of GG, taking recourse to Schur’s lemma to
identify arbitrary irreducible representations with one of the representatives
by means of the essentially unique intertwining operator.

We next describe the contragredient 7 of a representation 7. For this pur-
pose we define two involutions on B(H ), which are closely related to taking
adjoints. For this purpose let T' € B(H ). If (e;)ics is any orthonormal basis,
we may define two linear operators 7" and T by prescribing

<Tt€i,€j> = (Tej,e,-> ’ <—T€i,(’j> = <T€i,€j> 8

It is straightforward to check that these definitions do not depend on the
choice of basis, and that 7" = T', as we expect from finitedimensional matrix
calculus. Additionally, the relations 7t = T' = T* and (ST)! = T'S*, ST =
S T are easily verified.

Now, given a representation (7, H), the (standard realization of the)
contragredient representation T acts on H, by 7(z) = 7(z). In general,

TET.

Commuting Algebras

The study of the commuting algebra, i.e., the bounded operators intertwining
a representation with itself, is a central tool of representation theory. In this
book, the commutant of a subset M C B(H), is denoted by M’, and it is
given by

M ={TeBH):TS=ST , VSe M} .

It is a von Neumann algebra, i.e. a subalgebra of B(H) which is closed un-
der taking adjoints, contains the identity operator, and is closed with respect
to the strong operator topology. The von Neumann density theorem [36, The-
orem 1.3.2, Corollary 1.3.1] states for selfadjoint subalgebras A C B(H), that
closedness in any of the above topologies on B(H) is equivalent to A = A”.

There are two von Neumann algebras associated to any representation 7,
the commuting algebra of w, which is the algebra 7(G)’ of bounded oper-
ators intertwining 7 with itself, and the bicommutant 7(G)”, which is the
von Neumann algebra generated by 7(G). Since span(w(G)) is a selfadjoint
algebra, the von Neumann density theorem entails that it is dense in 7(G)"”
with respect to any of the above topologies. Invariant subspaces are conve-
niently discussed in terms of 7(G)’, since a closed subspace K is invariant
under 7 iff the projection onto K is contained in 7(G)".



