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PREFACE




Historically, vacuum technology has been of major importance in the
evolution of electronics ever since the first vacuum tube was constructed.
Means for obtaining and measuring vacuums have proven indispensable
in the development of nearly all electronic devices. Likewise, such means
are basic to the understanding of surface physics and surface chemistry.

For many experiments and purposes, pressures of the order of 10—%
torr (10— mm Hg or about 10—? atmosphere) are low enough, even
though surface phenomena studies show that at 10—¢ torr a surface be-

_comes covered with adsorbed gas in only a few seconds. Other experi-
ments, however, require the use of ultrahigh vacuum. At lower pressures
the number of collisions of gas phase atoms and molecules with a surface
is so small that & clean surface remains free of contamination long enough
to do experiments on the surface itself. Recent surface studies have re-
quired pressures of 10—® torr or lower. At this pressure no significant
surface contamination occeurs for a several-hour period. Pressures of 10—#
torr and below are generally called the ultrahigh vacuum range. Ultra-
high vacuum is a requisite for many experiments that involve either the
reaction between a surface and a gas or the properties of the surface itself.

Currently, the understanding and application of techniques of ultra-
high vacuum are somewhat restricted to specialists who of necessity are
familiar with meeting reports, subject literature that appears in scientific
journals, and parts of textbooks. From this material these men have
gained a working knowledge of the inherently simple techniques needed
in ultrahigh vacuum experiments. It has been clear for some time that
a book devoted to the study of ultrahigh vacuum was needed. We trust
that this book answers such a need.

Ultrahigh Vacuum and Its Applications is written primarily for the ex-
perimental scientist, engineer, or technician who has a nodding acquaint-
ance with ordinary vaeuum techniques and wishes to extend his knowledge
to include ultrahigh vacuum technology. We have carefully considered the
components, their theories of operation, their assembly and use, and the
nature of the materials of construction necessary for work in this field.
Data and guides for the production and use of ultrahigh vacuum have
been eollected in one place. The impact of ultrahigh vacuum on prob-
lems of technology is illustrated by a brief discussion of thin films, catal-
ysis, boundary lubrication, and space simulation. This book spells out
how to do it and where to find it.

R. W. Roberts and T. A. Vanderslice
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The need for a small book on ultrahigh vacuum technology was first
pointed out to us by Dr. F. J. Norton and Dr. L. E. St. Pierre. Dr.
St. Pierre participated in the early preparation of the manuscript and
wrote the section on boundary lubrication (7-2j.

We are grateful to Dr. K. B. Blodgett and Dr. G. L. Gaines, Jr., for
their penetrating criticisms of the manuscript and their many suggestions
for improvement. We would also like to thank Dr. P. Cannon, Dr. C. W.
Tucker, Dr. N. R. Whetten, and Dr. J. R. Young for helpful discussions.

Mrs. N. L. Gaertner and Miss C. W. Wilson aided in the preparation
of the figures and tables.
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