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PREFACE

Applying mathematics to biology has a long history, but only recently has there been an
explosion of interest in the field. Some reasons for this include: the explosion of data-rich
information sets, due to the genomics revolution, which are difficult to understand without the
use of analytical tools, recent development of mathematical tools such as chaos theory to help
understand complex, nonlinear mechanisms in biology, an increase in computing power
which enables calculations and simulations to be performed that were not previously possible,
and an increasing interest in in silico experimentation due to the complications involved in
human and animal research. This new book presents the latest leading-edge research in the
field.

In geometric knot theory, a central issue is to study the various geometric properties of
knots when the knots have certain thickness. This setting makes a knot more like one that is
tied with a uniform physical rope. These problems are mostly motivated by the recent
applications of knot theory in fields such as biology and polymer chemistry. In Chapter 1, the
authors will first give a brief review of the basic concepts and terminologies such as the
thickness of a knot and the ropelength of a knot. They will then review the main results in this
field. The topics will include results on the global minimum ropelength of knots, various
lower and upper ropelength bounds of knots in terms of their crossing numbers, and lower
and upper bounds on the total curvatures of thick knots. Some special families of knots or
under different settings, such as lattice knots and smooth knots are also considered. While
some proofs are omitted or only outlined due to the page limitation of the chapter, many
important ideas, methods, and theorems are explained in depth. At the end of the chapter, a
list of some open problems in this field is given.

In Chapter 2, the authors introduce new random dynamical systems generalizing neural
networks with random sources. They study homeostasis of such system. Namely, following
the viability theory, the authors suppose that there is a domain D in the phase space such that
if the system state leaves D, the system will be destroyed.

Under some assumptions, the authors show that a generic system of such type is, in a
sense, unstable under fluctuations. For a system with fixed parameters, the system state leaves
D within the time T with a probability P(7) such that P(T) — 0 as T —> . However, such

systems can survive for large times, i.e., P(T)> & > O for all times, if the system parameters
evolve in time.
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Some arguments show that if fluctuations are, in a sense, strong, the parameters should be
discrete. This allows to connect this evolution problem with theory of complexity and to show
that the problem of survival may be very difficult, at least NP-hard.

The authors consider some morphogenesis problems for genetic networks. They show
that these networks are capable to construct any spatio-temporal patterns. As an illustration,
the segmentation problem in Drosophila is considered and the pattern stability problem is
investigated.

Using some recent ideas for NP-complete problems, the authors formulate, as a
hypothesis, “Freedom Principle”: if a system has sufficiently many internal parameters to
adjust, then the survival is possible, namely, there exists an effective heuristic algorithm of
parameter evolution such that P(7)> & > 0 for all times 7.

An exhaustive review of results involving topological sequence entropy is made in
Chapter 3. Topological sequence entropy is an invariant by isomorphism which is an
extension of the well-known notion of topological entropy. Topological entropy is one of the
main tools to study chaotic dynamical systems. In this setting, topological sequence entropy
can distinguish between chaotic and non—chaotic maps of zero topological entropy. The
authors start by introducing metric sequence entropy (which is also an extension of metric
entropy) in the setting of ergodic theory and discussing its properties. Similar properties will
be satisfied also by topological sequence entropy although a variational principle which states
the relationship between metric and topological entropies fails for sequence entropy. Finally,
the authors see the relationship between topological sequence entropy and one of the most
usual notions of chaos, Li—Yorke chaos, in the setting of one and two dimensional dynamics.
They also give examples of computing explicitly topological sequence entropy for continuous
interval maps and shift maps in symbolic spaces called substitution and Morse shifts.

A topological approach is used for the description and analysis of biological
morphogenesis, and a topological interpretation of some morphogenetic events through the
use of well known mathematical concepts and theorems is presented in Chapter 4.

The authors model the biological shape as a set of smooth, closed, oriented surfaces —
membrane or epithelial layers. The spatial organization of membrane systems of eukaryotic
cells may be represented topologically as a number of inner membrane surfaces embedded
inside the outer cell membrane. During embryonic development and evolution process, the
surface of an organism in most Metazoa undergoes spherical surgery (-ies), which change the
topological genus of the surface. In some animal taxa topologically complicated fractal-like
systems increases the genus of the surface; the body surface becomes topologically
homeomorphic to a high-order torus.

Fractal-like biological structures are partially chaotic. To evaluate the relationship
between order and chaos in the structure of epithelial branching fractal-like channels of the
gastro-vascular system in the jellyfish Aurelia aurita and the larval tracheal gills of the
mayflies Siphlonurus immanis and Parameletus chelifer the authors compared these patterns
in symmetrical parts of the organisms with deterministic fractal trees. The transition from
order to chaos during morphogenesis of the dichotomously branching canals occurs as a
cascade of bifurcations. The authors have shown that fractal dimension value may serve as a
quantifier of neuronal spatial complexity correlating with cell morphology in several classes
of encephalic neurons in the fishes Pholidapus dybowskii and Oncorhyhchus keta and also
with morphological changes of some spinal neurons during ontogenesis of Oncorhynchus
masou.
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Topological singularities of various fields on different levels of biological organization
inevitably emerge and transform in biological morphogenesis. The authors studied cell
morphogenetic fields and fractal self-organization in cell cultures in vitro. Two-dimensional
cell direction fields with a defined set of topological singularities are shown in myogenic
monolayer culture. The egg cleavage results in a pattern of cell contacts on the surface of the
embryo as a discrete morphogenetic field.

Membrane and epithelial surfaces are boundary layers, interfaces between a living
structure and its environment, ensuring metabolism. Fractal structures as well as toroid forms
of Metazoa can be considered as functionally optimized biological design and attractors in
biological morphogenesis. The authors can say that a certain set of topological rules, a
“topological imperative”, constrains and directs biological morphogenesis.

As explained in Chapter 5, understanding the mechanisms behind the spatial patterns of
species distributions is one of the major focuses in theoretical ecology. Spatial modelling
techniques such as lattice models and cellular automata bring numerous spatial patterns in
ecology. Taking spatial factors into account also helps to solve many puzzles in ecology, such
as the paradoxes of diversity, polymorphism and altruism. To analyze the numerous spatial
patterns, ecologists introduced the moment approximation from statistical physics. Spatial
analysis of species distributions can also finds its roots in the sampling statistics of ecology.
Based on aggregation indicators (e.g. Lloyd’s indices and joint-count statistics), ecologists are
able to distinguish the degree of non-randomness from spatially implicit and explicit
perspectives, with over-dispersal and spatial autocorrelation as the synonyms of aggregation,
respectively. Such sampling statistics also leads to the occupancy-abundance relationship
with valuable applications in conservation. Although both spatial modelling and spatial
analysis aim to achieve a profound understanding of species spatial patterns, they barely
intersect. Through building the connections between sampling statistics and moment (pair)
approximation, the authors unveil the relationship between the sampling density (mean
abundance) and the colonization-extinction process. The intersection also solves the scaling
pattern of species distribution by applying the pair approximation and the Bayesian rule into
the joint-count statistics. By a scaling metapopulation model, the authors found that
randomness is the bridge linking sampling statistics and spatial modelling, as well as the
spatially implicit and explicit patterns. This intersection also sheds light on the occupancy-
abundance relationship and the connection between spatial patterns and species life-history
traits. In this exercise, the authors emphasize the importance and potential of bringing these
two schools of knowledge together in understanding ecological complexity. Ten merging
questions that require this intersection have been presented to expound on possible
applications to the species distribution and the community structure in the near future.

Chapter 6 reviews recent mathematical models of the epizootic of Hantavirus in mice
populations. The models are mainly based on field observations of Peromyscus maniculatus
populations in New Mexico, which hosts Sin Nombre virus. The sporadic disappearance of
the infection during times of adverse conditions is explained as a phase transition controlled
by the environment. Refinements of the model allow to include the effect of non-host
competitors, as well as to assess the validity of the diffusion transport. A stochastic model,
based on individual interactions, is also analyzed. The authors compare its macroscopic limit
with the mean field model, and discuss some phenomena inherent to stochastic systems: the
role of fluctuations, extinctions and stabilization of oscillations.
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In Chapter 7, the authors present an approach that can be useful to molecular biologists
interested in studying genetic networks. The proposed methods can be applied to choose
experiments to investigate a particular biological function. Considering a genetic network and
some steady states obtained from experimental data for that system, they designed two
reverse engineering procedures allowing us to determine two types of subnetworks of interest:
necessary network and minimum networks. A necessary network is the subnetwork where all
the interactions are necessary in order to conserve the observed steady states. Minimum
networks are the subnetworks where the steady states are conserved and where none of the
interactions can be removed from them. The authors considered, in this article, a genetic
network involved in the segmentation of the fly embryo. Generalized Logical Analysis and
constraint programming have been used in this study. In addition, considering the same
example, the authors show that they could select any model among myriads of valid ones in
order to simulate mutations. Indeed, experimental results indicate that the designed tests lead
to identical results for any chosen model.

There have been an approach to fractal geometry using the notion of approximate
sequences. Approximate sequences are inverse systems with some extra information that is
useful in representing the properties of topological spaces. In the inverse system approach to
fractal geometry, this information is used to represent fractal notions such as box-counting
dimension, Hausdorff dimesion, and Lipschitz functions. This approach gives a systematic
and categorical framework for fractal notions. However, most of the papers which have
appeared so far are based on approximate sequences which are not commutative.
Approximate sequences which are not commutative make the setting very technical and
restrict the audience, although it is general and more applicable. In Chapter 8 is constructed
the inverse system approach to fractal geometry using a simplified version of approximate
sequences, that is, commutative approximate sequences, so that scientists without the
knowledge of approximate sequences can easily study this approach.

Sexual dimorphism, as seen from the standpoint of biologists, is conceptually clear, its
existence offers no doubts, and its importance as a component of the form variation in
biological populations is well known. When sexual dimorphism has been mathematically
formulated, however, there have arisen some misinterpretations regarding its definition, the
wide variety of measures, or indices, by which it is assessed being the main reason. Chapter 9
surveys most of the different sexual dimorphism indices that have been proposed and with
this aim the following three assumptions have been made. The first one is that a random
variable and its distribution function - the population of measures of the biological trait under
study as well as the rule governing the probabilistic behavior of such measures - are involved.
The second one is that, in comparing the female and male populations, to be concerned with
only partial features of such populations, as for example their mean parameters, does not
seem the most appropriate; rather, on the contrary, the population as a whole should be
considered, which means that distribution functions are the objects to be analyzed. Finally,
the third assumption is related with the researcher inaccessibility to all observations of a
population; this, as is widely known, is the same as to say that, being random samples
implicated, it seems advisable to take some inferential procedure into account. In view of the
indices of sexual dimorphism here examined, it is concluded that most of them account for
only partial characteristics of the populations involved and they fail to incorporate an
inferential support.
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In Chapter 10, using a discrete deterministic model, the ergodicity of an age-structured
population with an additional structure is investigated, and its autonomous first integral
computed. The processes under consideration are Markovian and one of their basic attributes
is that they are either conservative or dissipative (systems). Next, this population dynamics
problem with an additional structure is transformed into an abstract Cauchy problem which is
explicitly solved using functional analytic method. Instead of using the familiar theory of
resolvent, the condition of well-posedness is replaced by its equivalent form in order to prove
the existence of a unique weak solution. An a priori estimate of the solution is also given as
well as the perturbation about the equilibrium point and by a bounded linear operator.

The knowledge of the nerve impulse in medicine is of particular relevance to the
improvement of medical diagnostic and therapeutic methods. The electrochemical behaviour
of the axon membrane plays an important and key role in the resulting nerve impulse, which
can be related to the movement of ions between the extra and intracellular regions due to the
active and the passive transports. In Chapter 11 the authors present a new contribution for the
understanding of the diffusion process in a biological membrane of an axon. The problem is
formulated for the sodium current from the electromagnetic theory. Indeed from the Maxwell
equations the authors state a mathematical model considering the Fick-Ohm law for the total
electrical current density. An analytical solution is proposed under different physiological
parameters.
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Chapter 1

GEOMETRIC PROPERTIES AND PROBLEMS
OF THICK KNOTS

Yuanan Diao* and Claus Ernst'
*Department of Mathematics and Statistics
University of North Carolina at Charlotte
Charlotte, NC 28223, USA
fDepartment of Mathematics
Western Kentucky University
Bowling Green, KY 42101, USA

Abstract

In geometric knot theory, a central issue is to study the various geometric properties
of knots when the knots have certain thickness. This setting makes a knot more like
one that is tied with a uniform physical rope. These problems are mostly motivated by
the recent applications of knot theory in fields such as biology and polymer chemistry.
In this chapter, we will first give a brief review of the basic concepts and terminologies
such as the thickness of a knot and the ropelength of a knot. We will then review
the main results in this field. The topics will include results on the global minimum
ropelength of knots, various lower and upper ropelength bounds of knots in terms of
their crossing numbers, and lower and upper bounds on the total curvatures of thick
knots. Some special families of knots or under different settings, such as lattice knots
and smooth knots are also considered. While some proofs are omitted or only outlined
due to the page limitation of the chapter, many important ideas, methods, and theorems
are explained in depth. At the end of the chapter, a list of some open problems in this
field is given.

1. Introduction

In this chapter, we will discuss the geometric properties of knots when they are considered
as physical subjects, that is, when the knots are tied with ropes which have thickness and
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volume. This is in sharp contrast with the traditional mathematical treatment of knots which
views knots as volumeless simple closed curves in the 3-dimensional space R3. It is well
known that knots play an important role in studying the behavior of various enzymes known
as topoisomerases, see for example [15, 39, 40, 62, 66, 67]. Since the (effective) diameter of
DNA can be measured, it is possible to model it as a rope with certain physical properties,
see for example [58, 60]. It is also important to recognize the volume occupying nature
and the geometric shapes of physical knots [42]. An essential issue here is to relate the
length of a rope (with certain thickness) to those knots that can be tied with this rope. Such
information plays an important role in studying the effect of topological entanglement in
subjects such as circular DNA and long chain polymers, where knots occur and cannot be
treated as volumeless curves.

To model a physical knot that is smooth (as that of a uniform rope), the concept of thick-
ness of a knot is introduced. The thickness of a smooth knot can be thought of, intuitively,
as the radius of the largest embedded normal tube around the knot, although slight varia-
tions of the definition do exist. See for example Cantarella, Kusner and Sullivan [12], Diao,
Ernst and Janse van Rensburg [27], and Litherland, Simon, Durumeric and Rawdon [47]. A
thick knot is a smooth knot with a positive thickness and the ropelength of a thick knot K is
the quotient of its arclength over its thickness and is denoted by L, (K). This quotient en-
sures that the ropelength is independent of the actual thickness of the tube. The ropelength
minimizing configuration of a given knot type is called an ideal knot or a tight knot. It is
proven by Cantarella et al [12] that the ropelength minimizer of any given knot type exists.
However, it is an extremely hard problem to find the exact ropelength of a nontrivial knot.
In fact, the exact ropelength is not known for any nontrivial one component knot. Conse-
quently, most works concerning (one component) ideal knots are either numerical studies
on small knots or are devoted to establishing theoretical lower or upper ropelength bounds,
see for example the collection of articles in the book [61] edited by Stasiak, Katritch, and
Kauffman and [17, 22, 23, 24, 28, 29, 33, 35, 53, 55, 59].

In this chapter, we will first discuss the concept of thickness in more details and outline
a few well known and important results about it. We will then discuss the lattice knots and
the relationship between smooth thick knots and lattices knots in terms of their lengths (as
lattice knots are easier to treat sometimes). We will then give a detailed account of the re-
sults on the ropelength of thick knots (L, (K)) with a focus on lower and upperbounds. This
includes the global ropelength lower bound of all nontrivial knots, the general ropelength
lower bound of a nontrivial knot in terms of its crossing number, the general ropelength up-
per bound of a nontrivial knot in terms of its crossing number, and the ropelength bounds for
some special classes of knots. We will also include results on the upper and lower bounds
of total curvature of nontrivial thick knots in terms of their crossing numbers, as well as the
bounds on linking numbers in terms of the length of a thick link with two components. We
conclude this chapter with a list of open questions.
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2. Some Basic Facts of Knot Theory

Let K be a smooth knot (or link), that is, a smooth embedding of the unit circle (or circles)
into R®. A continuous map H : I x R® — I x R® (where I = [0, 1]) is called an
ambient isotopy if, for each fixed s € [0, 1], H(s,z) is a homeomorphism from R? to R3.
Two knots (or links) K and K’ are said to be of the same knot type K if there exists an
ambient isotopy H : I x R® — I x R3 such that H(0, z) is the identity map on R3 and
H(1,z) maps K to K'. It is easy to see that the knot type defines an equivalence relation
among all smooth or piecewise smooth knots. We say that K is a trivial knot if K is of the
same knot type as that of a unit circle in R3. We say that K is a nontrivial knot if it is not a
trivial knot.

The projection of K into a plane II is a closed curve (or collection of closed curves
if K is a link) in II that may contain self-intersecting points, such a projection is denoted
by P;(K) where ¢ is a unit vector normal to II. A self-intersecting point is also called
a crossing of Py(K'). The multiplicity of a crossing in the projection is the number of
strands that pass through that point. We say that P;(K) is a regular projection or diagram
if there are only finitely many crossings in P;(K) and all crossings are of multiplicity 2.
Furthermore, at each crossing in a regular knot projection, the strand that goes over and the
strand that goes under are also marked, see Figure 1. With this additional information from
over-strand and under-strand, one can easily reconstruct a knot X’ such that K’ and K have
the same knot type and have the same knot projection. It is a well-known result for any
(piece-wise smooth) knot K, its projection is a regular projection for almost all projection
directions.

A common measure for the complexity of a knot or link type K is its crossing number,
which is the minimum number of crossings of Py(K), taken over all vectors ¥ and all knots
K ofknot type K where Py(K) is a regular projection. The crossing number of K is denoted
by Cr(K) or often by Cr(K). Of course, by this definition, if K and K’ are of the same
knot type K, then Cr(K) = Cr(K'). We say that P;(K) is a minimal diagram of K if it
is a regular projection with Cr(K) crossings.

A knot K is called a composite knot if (1) there exists a topological 2-sphere S? such
that K intersects S? in exactly two points and (2) two nontrivial knots are formed when the
two parts of K that are inside and outside S? are joined by a simple curve on S? between
the points of K N S2. We say that K is a prime knot if it is not a composite knot. A
composite knot K can be easily constructed from two nontrivial knots K 1 and K5 as shown
in Figure 1 by cutting the dashed arcs from K; and K5 and then adding the two arcs as
shown in Figure 1. We say that K is a connected sum of K, and K> in this case and also
denote K by K{#K>,. One can similarly define the connected sum of more than two knot
components.

The following theorems are classical results in knot theory [7].

Theorem 2.1. Any nontrivial knot K can be decomposed as the connected sum of some
prime knots. That is, for any nontrivial knot K, there exist prime knots K1, K, ..., K;
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Figure 1. A regular projection of a composite knot: the left component has four crossings
and the right component has five crossings.

(5 = 1) such that K = Ki#Ko#..#K;.

Theorem 2.2. For any knots K1 and K3, we have Cr(K 1#K2) < Cr(K;) + Cr(K»). If
K1 and K are alternating knots, then we have Cr(K1#K3) = Cr(K;) + Cr(Ka).

It is still an open problem whether Cr(K1# K2) = Cr(K1) + Cr(Ky) is true for any
two knots K; and K. The concept of prime knots can be applied to links as well. However,
when there is more than one component present in either K7 or K5, the connected sum
K1 #K is not well-defined unless we specify to which component the connection is to be
made. As long as we understand that there is a choice of components involved in K # K>
(even though it is not spelled out explicitly), the above theorems still hold in the case of
links.

3. Thicknesses of Knots

There are different ways to define the thickness of a knot [12, 27, 44, 47, 53]. The concep-
tually easiest definition of thickness is the so called disk thickness introduced in [47] and
described as follows. Let K be a C? knot. A number r > 0 is said to be nice if for any
distinct points z, y on K, we have D(z,r) N D(y,r) = 0, where D(z,r) and D(y,r) are
the discs of radius r centered at x and y which are normal to K. The disk thickness of K is
defined to be ¢t p(K) = sup{r : r is nice}.

Let a(s) be an arclength parameterized equation of K. A pair of points (z1,z5) =
(a(s1),a(s2)) € K are called double critical points if (z3 — x1) - &/(s1) = (z2 — 1) -
a'(sz) = 0. It is obvious that for any smooth K, there exist at least one pair of double
critical points. We may thus define the set of all such double critical point pairs by C'(K)
following the notation in the article of Litherland et al [47], which also contains following
theorem.

Theorem 3.1. [47] For any C? knot K, its thickness tp(K) is given by

tp(K) = min{l/k,d(K)},
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where K is the maximum curvature of the curve K and

1
d(K) = = 1 9 — T
(K) 2%;;1613(1{)” 2 — x|

is the minimum separation between any two double critical points in K.

The disk thickness definition can be extended to more general curves including C! and
C11 curves. We will introduce three such notions.

The simplest approach to generalize the disk thickness ¢p(K) allows the intersections
of disks normal to K [27]. In a sense these are ways to model knots tied with non-uniform
ropes. First, for any two points  and y on a smooth knot K, we will let s(z,y) be the
length of the shorter arc on K between the points x and v.

Definition 3.2. [27] Let K be a C'! smooth knot. Fix an ¢ € [0, 27/3). Then c is an e-nice
number if D;(c) N Dy(c) = @ for all z, y € K such that s(z,y) > ec. The T.-thickness of
K is defined as

T (K) = sup{t : tise—nice}.

It is obvious that Ty = tp(K) and that T.(K) is a non-decreasing function of ¢ for
each fixed K. The reason for the condition € < 27 /3 can be seen in the following example.
Consider the unit circle with three points on it separated by arclength 27 /3. Now push
the three points slightly inward so that the resulting curve remains smooth and the normal
planes at the three points all contain the y-axis. For most values of ¢ the thickness of the
new curve is defined by the minimal normal disks around these three points. By making the
deformation of the circle very small, we obtain a curve whose thickness is as close to 1 as
we choose. But for some € > 27/3, these three points will not be used in the calculation
of the thickness. As a result, we will get a thickness of one. Thus we will be able to find a
¢ > 0 that is close enough to 1 so that the c-neighborhood of the curve is no longer a solid
torus. Thus T is no longer a valid thickness for X, see Theorem 3.4.

The second definition of another thickness is similar to 7.(K) in the sense that is pa-
rameterized by € as well but it is different because it is defined in terms of a more explicit
formula.

Definition 3.3. [27] Let K be a C'! smooth knot with an arclength parameterized equation
a(s). Fix an € € [0,27/3). Then the ¢ -thickness of K is defined as

L) = (AETUL | 25m0) s(a)
zyeK “2sinf(z,y) |z — vl

where 6(z, y) is the smaller angle between T}, (the tangent vector of K at x) and y — z.

%ﬁf’;f(z—’y) > e is called the controlling condition and the function
2sin 6(z,y)-s(x,y)

B e is called the controlling function. The set of all points (z,y) € K x K
satisiLying the controlling condition is denoted by M,.

The condition
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It is easy to see that t.(K) is a non-decreasing function of e for each fixed K since we
have M¢, C M., whenever ¢; > es.

However, it is much less obvious that ¢o(K) exists and defines a meaningful thickness
and that it equals tp(K) (when K is a C? curve). The fact that t.(K) > 0 is defined

for any € > 0 follows from the following reasoning: the limit of the controlling function

W is 0 if z = y. Thus the controlling function can be thought of as a continu-

ous function over the compact set K x K. Since M, is a closed subset of K x K, itis also

compact. M, is not empty as long as € < 27/3 (this is actually not so obvious, see [27] for

llz—yll
> 2sinf(z,y)

is a continuous function on M. It follows that there exists (xg, yo) € M. such that

a full discussion). In addition, sin §(z, y) is bounded away from 0 on M,. Hence

: yll lzo — ol
te ) = f .
«(K) (:c,gir)lez\fr {2sm9 (z y)} 2 sin 0(xo, yo)

Since xg # Yo, thus ||zo — yo|| > 0 and so ¢ (K) > 0.

In the case that ¢ = 0 and K is a C? curve, My = K x K. In this case, sin 0(z, y) is
not bounded away from 0. However one can show that

lo—yl _ 1
y—z 2sinf(z,y) k(z)’

where x(x) is the curvature of K at . Furthermore, this limit converges uniformly on K.

Thus, Flllff—e:% can be extended to a continuous function on K x K. It then becomes

clear that p = max{m%} > 0 exists and that to(K) = tp(K). See [27] for a full
discussion.

The following theorem guarantees that t. and 7 are valid thicknesses under the given
condition € < 27/3.

Theorem 3.4. [27] T.(K) defines a thickness of K, i.e.,, K(c) is a solid torus which is
homotopic to K via a strong deformation retract for every ¢ < T.(K), where K(c) is the

c-neighborhood of K, namely the set of all points in R3 that are within a distance c from
K. Similarly, t.(K) also defines a thickness of K.

First one shows that t.(K) < T.(K) for each e. Thus it suffices to show Theorem 3.4
for T((K). The proof that T.(K') defines a thickness for K is not trivial. The following
lemmas give an outline leading to the proof of this fact.

Lemma 3.5. [27] For each C' smooth knot K, there exists cg > 0 such that K (c) is a solid
torus (with K as its center curve) which is homotopic to K via strong deformation retract
Jor any ¢ such that 0 < ¢ < cg.

Proof. The goal of the proof is to define a product structure K x D(z) on K (c), where
D(x) is a planar disk containing z in its interior such that D(xz) N K = z. This product
structure is then used to define a strong deformation retract from K (c) to K. The entire
proof of this fact is rather technical and tedious. See [27] for the details. g



