~ George T.Heineman Ivica Crnkovic
Heinz W. Schmidt Judith A. Stafford
Clemens Szyperski Kurt Wallnau (Eds.)

Component-Based
Software Engineering

8th International Symposium, CBSE 2005
St. Louis, MO, USA, May 2005
Proceedings

LNCS 3489

@ Springer

~George T. Heineman Ivica Crnkovic

S 3 Heinz W. Schmidt Judith A. Stafford

Clemens Szyperski Kurt Wallnau (Eds.)

Component-Based
Software Engineering

8th International Symposium, CBSE 2005

St. Louis, MO, USA, May 14-15, 2005
Proceedings

VAR

E200501342

@ Springer

Volume Editors

George T. Heineman

WPI, Department of Computer Science

100 Institute Road, Worcester, MA 01609, USA
E-mail: heineman @cs.wpi.edu

Ivica Cmkovic

Milardalen University, Department of Computer Science and Engineering
Box 883, 72123 Visteras, Sweden

E-mail: ivica.crnkovic@mdh.se

Heinz W. Schmidt

Monash University, School of Computer Science and Software Engineering
Wellington Road, Clayton VIC 3800 , Australia

E-mail: Heinz.Schmidt@csse.monash.edu.au

Judith A. Stafford

Tufts University, Department of Computer Science
161 College Avenue, Medford, MA 02155, USA
E-mail: jas@cs.tufts.edu

Clemens Szyperski

Microsoft

One Microsoft Way, Redmond, WA 98053, USA
E-mail: cszypers @microsoft.com

Kurt Wallnau

Carnegie Mellon University, Software Engineering Institute
Pittsburgh, Pennsylvania 15213-3890, USA

E-mail: kew @sei.cmu.edu

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, D.1.5, D.3, F3.1

ISSN 0302-9743
ISBN-10 3-540-25877-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25877-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting;-re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.
Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11424529 06/3142 543210

Preface

On behalf of the Organizing Committee I am pleased to present the proceedings
of the 2005 Symposium on Component-Based Software Engineering (CBSE).
CBSE is concerned with the development of software-intensive systems from
reusable parts (components), the development of reusable parts, and system
maintenance and improvement by means of component replacement and cus-
tomization. CBSE 2005, “Software Components at Work,” was the eighth in a
series of events that promote a science and technology foundation for achieving
predictable quality in software systems through the use of software component
technology and its associated software engineering practices.

We were fortunate to have a dedicated Program Committee comprised of 30
internationally recognized researchers and industrial practitioners. We received
91 submissions and each paper was reviewed by at least three Program Commit-
tee members (four for papers with an author on the Program Committee). The
entire reviewing process was supported by CyberChairPro, the Web-based paper
submission and review system developed and supported by Richard van de Stadt
of Borbala Online Conference Services. After a two-day virtual Program Com-
mittee meeting, 21 submissions were accepted as long papers and 2 submissions
were accepted as short papers.

We are grateful for the assistance provided by the organizers of the ICSE con-
ference, in particular the General Chair, Gruia-Catalin Roman, and the Work-
shops and Co-located Events Co-chair André van der Hoek. We also wish to
thank the ACM Special Interest Group on Software Engineering (SIGSOFT) for
their sponsorship of CBSE 2005. The proceedings you now hold were published
by Springer and we are grateful for their support. Finally, we must thank the
many authors who contributed the high-quality papers contained within these
proceedings. As the international community of CBSE researchers and practi-
tioners continues to grow, we expect the CBSE Symposium series to similarly
attract widespread interest and participation.

March 2005 George T. Heineman
Worcester, MA
USA

VI Organization

Organization

CBSE 2005 was sponsored by the Association for Computing Machinery
(ACM) Special Interest Group in Software (SIGSOFT). CBSE 2005 was a co-
located event with the 27th International Conference on Software Engineering
(ICSE 2005).

Organizing Committee

Program Chair

Steering Committee

Program Committee

Luca de Alfaro

Rob Armstrong
Uwe ABmann

Jakob Axelsson
Mike Barnett
Judith Bishop

Jan Bosch

Michel Chaudron
Ivica Crnkovic
Susan Eisenbach
Wolfgang Emmerich
Dimitra Giannakopoulou
Richard Hall

Dick Hamlet
George T. Heineman
Tom Henzinger
Paola Inverardi
Bengt Jonsson
Magnus Larsson
Kung-Kiu Lau
Nenad Medvidovic
Rob van Ommering

George T. Heineman (WPI, USA)

Ivica Crnkovic

(Mélardalen University, Sweden)
Heinz W. Schmidt

(Monash University, Australia)
Judith A. Stafford (Tufts University, USA)
Clemens Szyperski (Microsoft Research, USA)
Kurt Wallnau

(Software Engineering Institute, USA)

University of California, Santa Cruz, USA
Sandia National Laboratories, USA
Dresden University of Technology, Germany
Volvo Car Corporation, Sweden

Microsoft Research, USA

University of Pretoria, South Africa
Nokia Research Center, Finland
University Eindhoven, The Netherlands
Malardalen University, Sweden

Imperial College London, UK

University College London, UK

NASA Ames, USA

LSR-IMAG, France

Portland State University, USA

WPI, USA

EPFL, Switzerland and UC Berkeley, USA
University of L’Aquila, Italy

Uppsala University, Sweden

ABB, Sweden

University of Manchester, UK

University of Southern California, USA
Philips Research, The Netherlands

Program Committee (cont.)

Otto Preiss

Ralf Reussner
Douglas Schmidt
Heinz W. Schmidt
Jean-Guy Schneider
Judith A. Stafford
Kurt Wallnau

Dave Wile

Co-reviewers

Eddie Aftandilian
Mikael Akerholm
Somo Banerjee
Steffen Becker
Dirk Beyer

Egor Bondarev
Ivor Bosloper
Guillaume Brat
Reinder J. Bril
Arindam Chakrabarti
Robert Chatley
Sybren Deelstra,
Viktoria Firus
Kathi Fisler
Eelke Folmer
Johan Fredriksson
Esther Gelle

Falk Hartmann
Mugurel T. Ionita
Vladimir Jakobac
Anton Jansen

Organization VII

ABB Corporate Research Centers, Switzerland
University of Oldenburg, Germany

Vanderbilt University, USA

Monash University, Australia

Swinburne University of Technology, Australia
Tufts University, USA

Software Engineering Institute, USA
Teknowledge, Corp., USA

Xiaohong Jin
Merijn de Jonge
Hugo Jonker
Thomas E. Koch
Emanuel Kolb

Sten Locher

Rikard Land

Ling Ling

Markus Lumpe
Frank Liiders
Wolfgang Mahnke
Sam Malek
Antinisca Di Marco
Chris Mattmann
Hailiang Mei
Raffaela Mirandola
Johan Muskens
Martin Naedele
Ioannis Ntalamagkas
Owen O’Malley
Fernando C. Osorio

Joachim Parrow
Corina Pasareanu
Paul Pettersson
Roshanak Roshandel
Chris Sadler
Johanneke Siljee
Marco Sinnema
James Skene

Antony Tang

Faris M. Taweel
Perla Velasco Elizondo
Bjorn Victor

Erik de Vink

Lucian Voinea
Anders Wall

Zheng Wang

Wang Yi

Yang Yu

Previous CBSE Workshops and Symposia

7th International Symposium on CBSE, Lecture Notes in Computer Science,

Vol. 3054, Crnkovic, I.; Stafford, J.A.; Schmidt, H.W.; Wallnau, K. (Eds.)

Springer, Edinburgh, UK (2004)

k)

6th ICSE Workshop on CBSE: Automated Reasoning and Prediction
http://www.sei.cmu.edu/pacc/CBSES. Portland, Oregon (2003)

VIII Organization

Previous CBSE Workshops and Symposia (cont.)

5th ICSE Workshop on CBSE: Benchmarks for Predictable Assembly
http://www.sei.cmu.edu/pacc/CBSE5. Orlando, Florida (2002)

4th ICSE Workshop on CBSE: Component Certification and System Prediction.
Software Engineering Notes, 26(10), November 2001. ACM SIGSOFT Author(s):
Crnkovic, I.; Schmidt, H.; Stafford, J.; Wallnau, K. (Eds.)
http://www.sei.cmu.edu/pacc/CBSE4-Proceedings.html. Toronto, Canada,
(2001)

3rd ICSE Workshop on CBSE: Reflection in Practice
http://wuw.sei.cmu.edu/pacc/cbse2000. Limerick, Ireland (2000)

2nd ICSE Workshop on CBSE: Developing a Handbook for CBSE
http://www.sei.cmu.edu/cbs/icse99. Los Angeles, California (1999)

1st Workshop on CBSE
http://www.sei.cmu.edu/pacc/icse98. Tokyo, Japan (1998)

Table of Contents

Prediction, Analysis and Monitoring of System
Architecture

Performance Prediction of J2EE Applications Using Messaging
Protocolso e 1
Yan Liu, Ian Gorton

EJBMemProf — A Memory Profiling Framework for Enterprise
JavaBeans 17
Marcus Meyerhéfer, Bernhard Volz

Model-Driven Safety Evaluation with State-Event-Based Component
Failure Annotationsouiiineiin i 33
Lars Grunske, Bernhard Kaiser, Yiannis Papadopoulos

Optimizing Resource Usage in Component-Based Real-Time Systems 49
Johan Fredriksson, Kristian Sandstrom, Mikael Akerholm

Evaluating Performance Attributes of Layered Software Architecture 66
Vibhu Saujanya Sharma, Pankaj Jalote, Kishor S. Triveds

Component-Level Dataflow Analysis............... 82
Atanas Rountev

Architecture and Design of Component-Based
Systems

Exogenous Connectors for Software Components 90
Kung-Kiu Lau, Perla Velasco Elizondo, Zheng Wang

Qinna, a Component-Based QoS Architecture 107
Jean-Charles Tournier, Jean-Philippe Babau, Vincent Olive

Architecture Based Deployment of Large-Scale Component Based
Systems: The Tool and Principles 123

Ling Lan, Gang Huang, Liya Ma, Meng Wang, Hong Mei, Long Zhanyg,
Ying Chen

Component-Based Open Middleware Supporting Aspect-Oriented
Software Compositionouiuuue 139
Bert Lagaisse, Wouter Joosen

X Table of Contents

An Empirical Study on the Specification and Selection of Components
Using Fuzzy Logic ... 155

Kendra Cooper, Joao W. Cangussu, Rong Lin,
Ganesan Sankaranarayanan, Ragouramane Soundararadjane,

Eric Wong

Finding a Needle in the Haystack: A Technique for Ranking Matches
Between Components.................ooiiiiiiiiii 171
Naiyana Tansalarak, Kajal Claypool

Extra-Functional System Properties of Components
and Component-Based Systems

A Contracting System for Hierarchical Components 187
Philippe Collet, Roger Rousseau, Thierry Coupaye, Nicolas Rivierre

Tailored Responsibility Within Component-Based Systems 203
Elke Franz, Ute Wappler

Efficient Upgrading in a Purely Functional Component Deployment
Model 219

Eelco Dolstra

Real-Time Scheduling Techniques for Implementation Synthesis from
Component-Based Software Models0 e 235
Zonghua Gu, Zhimin He

A Component-Oriented Model for the Design of Safe Multi-threaded
Applications. i 251
Reimer Behrends, R.E. Kurt Stirewalt, Laura K. Dillon

TESTOR: Deriving Test Sequences from Model-Based Specifications 267
Patrizio Pelliccione, Henry Muccini, Antonio Bucchiarone,
Fabrizio Facchini

Components at Work

A CCA-compliant Nuclear Power Plant Simulator Kernel 283
Manuel Diaz, Daniel Garrido, Sergio Romero, Bartolomé Rubio,
Enrique Soler, José M. Troya

Experience with Component-Based Development of a

Telecommunication Service...................... 298
Gregory W. Bond, Eric Cheung, Healfdene H. Goguen,

Karrie J. Hanson, Don Henderson, Gerald M. Karam, K. Hal Purdy,

Thomas M. Smith, Pamela Zave

Table of Contents XI

Reusable Dialog Component Framework for Rapid Voice Application
Developmentuiu i e 306
Rahul P. Akolkar, Tanveer Faruquie, Juan Huerta, Pankaj Kankar,

Nitendra Rajput, T.V. Raman, Raghavendra U. Udupa,

Abhishek Verma

Unlocking the Grid. e 322
Chris A. Mattmann, Nenad Medvidovic, Paul M. Ramirez,
Viadimir Jakobac

Experience Report: Design and Implementation of a Component-Based
Protection Architecture for ASP.NET Web Services 337
Konstantin Beznosov

Concept Indextocciniimisnimimsinisssscsniaasnsabsnia 353

Author Index ... 357

Performance Prediction of J2EE Applications Using
Messaging Protocols

Yan Liu, Ian Gorton

National ICT Australia (NICTA),
1430, NSW, Australia
{jenny.liu, ian.gorton}enicta.com.au

Abstract. Predicting the performance of component-based applications is diffi-
cult due to the complexity of the underlying component technology. This prob-
lem is exacerbated when a messaging protocol is introduced to create a loosely
coupled software architecture. Messaging uses asynchronous communication,
and must address quality of service issues such as message persistence and flow
control. In this paper, we present an approach to predicting the performance of
Java 2 Enterprise Edition (J2EE) applications using messaging services. The
prediction is done during application design, without access to the application
implementation. This is achieved by modeling the interactions among J2EE and
messaging components using queuing network models, calibrating the perform-
ance model with architecture attributes associated with these components, and
populating the model parameters using a lightweight, application-independent
benchmark. Benchmarking avoids the need for prototype testing in order to ob-
tain the value of model parameters, and thus reduces the performance predic-
tion effort. A case study is carried out to predict the performance of a J2EE ap-
plication with asynchronous communication. Analysis of the resulting predic-
tions shows the error is within 15%.

1 Introduction

Many software component models utilize synchronous communication protocols,
such as Enterprise JavaBeans (EJB) based on RMI, and RPC-based CORBA or
COM+ components. Synchronous communication dictates that the client process
blocks until the response to its request arrives. More loosely coupled software archi-
tectures can be constructed using asynchronous invocations. These place an interme-
diary messaging service between the client and server, decoupling their execution. In
addition, asynchronous invocations are desirable for applications with high perform-
ance and scalability requirements. For these reasons, component technologies have
been integrated with messaging protocols to support the development of applications
with asynchronous architectures.

Messaging services are implemented by message-oriented middleware (MOM),
such as Microsoft MSMQ, IBM WebSphere MQ, CORBA Notification Services and
Sun’s JMS (Java Messaging Service). JMS is a Java interface specification, which
provides a standard way for Java applications to access enterprise messaging infra-

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 1-16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 Yan Liu and Ian Gorton

structure. MOM typically supports two forms of messaging: point-to-point (PTP) and
publish/subscribe (Pub/Sub). In the PTP model, the message producer posts a mes-
sage to a queue, and the message consumer retrieves the message from the queue. In
the Pub/Sub model, a message producer publishes a message to a topic, and all con-
sumers subscribing to the same topic retrieve a copy of the message. MOMs also
define a set of reliability attributes for messaging, including non-persistent or persis-
tent and non-transactional or transaction queues [18].

A component-based application using messaging protocols hence exploits an asyn-
chronous, queue-based communication paradigm. It must also address additional
architectural considerations such as the topology of component connections, message
persistence and flow control. All of these factors can heavily influence the resulting
application’s performance [18].

However, the choice of application architecture must to be made early in the appli-
cation life cycle, long before substantial coding takes place. Unwise decisions at
design-time are often very difficult to alter, and could make it impossible to achieve
the required performance level once the system has been delivered [5][6]. Conse-
quently, the designer needs to be able to predict the performance of asynchronous
components, working from an abstract design but without access to a complete im-
plementation of the application.

Our previous work in [9] develops an approach to predicting the performance of
only synchronous J2EE applications from design-level descriptions. The contribution
of this paper is the extension of our approach to predict the performance of applica-
tions comprising both synchronous and asynchronous communications. This is
achieved by modeling the component infrastructure that implements the messaging
service. We then execute benchmarks to obtain values of model parameters associated
with the performance characteristics of the underlying component infrastructure and
the messaging service. We validate our approach through a case study, in which we
compare predicted versus actual performance of an example application.

2 Related Work

Our previous work in [9] integrates analytical modeling and benchmark testing to
predict the performance of J2EE applications using EJB components. A case study
showed that without access the application source code, prediction can be accurate
enough (prediction error is below 15%) to evaluate an architecture design. However,
this work only addresses synchronous communication between components.
Performance modeling is a useful approach for performance analysis [16]. Tradi-
tional performance modeling techniques can be manually applied to applications
based on Message-Oriented Middleware (MOM). [17] analyzes a multilayered queue
network that models the communication between clients and servers via synchronous
and asynchronous messages. [11] applies a layered QNM for business process inte-
gration middleware and compares the performance for both synchronous and asyn-
chronous architectures. However, explicit values for performance parameters are
required to solve these models, such as the CPU time used by each operation.

Performance Prediction of J2EE Applications Using Messaging Protocols 3

However, such performance parameters cannot be accurately estimated during an
application design. A common practice therefore is to build a prototype and use this
to obtain measures for the values of parameters in the model. For a complex applica-
tion, this is expensive and time-consuming. Progress has been made to reduce the
prototyping effort with tool support for automatic generation of test beds [1][3]. Al-
though prototype testing can produce empirical evidence of the suitability of an archi-
tecture design, it is inherently inefficient in predicting performance as the application
architecture inevitably evolves. Under change, the test bed has to be regenerated and
redeployed, and the measurement has to be repeated for each change.

In related research towards software performance engineering, many approaches
translate architecture designs mostly in United Modeling Language (UML) to analyti-
cal models, such as Queuing Network models [7], stochastic Petri nets [14] or sto-
chastic process algebras [2]. In these approaches, the application workflow is pre-
sented in a sequence or state diagram, and a deployment diagram is used to describe
the hardware and software resources, their topology and characteristics.

Importantly however, the component infrastructure and its performance properties
are not explicitly modeled. These approaches therefore generally ignore or greatly
simplify the details of the underlying component infrastructure performance. As a
result, the models are rather inaccurate or non-representative. [8] developed a simu-
lated model of CORBA middleware but the work is specific to threading structure of
a CORBA server. Hence, little work has been done to develop an engineering ap-
proach to predict during design the runtime performance of messaging applications.

3 Major Performance Factors of J2EE Applications

J2EE includes several different component types, including EJB. EJB components act
as servers and execute within a component container. A request to an EJB is passed
through a method invocation chain implemented by the container and finally reaches
the EJB method specified in the request. The invocation chain is used by the con-
tainer to call security and transaction services that the EJB methods specify.

The container provides the hosting environment for EJBs and manages their life-
cycle according to the context information of the request. The container also coordi-
nates the interaction between EJBs and other J2EE services and facilities access to
external data source connection pools. To improve performance and scalability, the
container is multi-threaded and can service multiple simultaneous EJB requests. Mul-
tiple instances of threads, EJBs and database connections are pooled to provide effi-
cient resource usage in the container. Incoming requests are queued and wait for a
container thread if none are available from the fixed size thread pool.

Concurrent EJB requests experience contention at three points inside the container.
These are during request dispatching to an EJB, during container processing and
during access to external data sources. As a result, apart from the underlying hard-
ware and software environment, the performance of a deployed J2EE application
depends on a combination of the following factors:

e behavior of its application-specific EJB components and their interactions;
e particular implementation of the component infrastructure, or container;

4 Yan Liu and Ian Gorton

e selected configuration settings for the container (e.g. thread pool size);

e attribute settings of both the application components (e.g. the persistence at-
tribute of EJBs) and the infrastructure components (e.g. the transaction isola-
tion level of the container);

e simultaneous request load experienced at a given time by the application [5].
Integrating a JMS messaging service with EJB components introduces further per-
formance considerations. These include the topology of component connections,
message persistence needs, and flow control. For instance, non-persistent messaging
has better performance than persistent messaging [18]. However persistent messaging
creates an application that is guaranteed not to lose messages, and hence is more
reliable. For an architect, the ability to quantify this performance/reliability trade-off
without building each solution is desirable, as is determination of the level of per-
formance that the overall system provides under load.

4 The Performance Prediction Approach

A performance prediction approach for J2EE applications with messaging protocol
needs to encompass the following three aspects. First, the performance model should
explicitly represent the component container, the MOM service and their communica-
tion with application components. Second, the service time of a request depends on
the container and MOM attributes. For example, in MOM-based applications, the
setting of a messaging attribute is an architectural design decision and the effect on
performance should be modeled as a function of the messaging attributes of interest.
Third, an application-independent performance profile of the container and the MOM
infrastructure is required. This is because the container and message server imple-
mentation and the operating system/hardware platform must be taken into account to
be able to make accurate application performance predictions.

The relationship between the performance model and the component container per-
formance profile for a selected architecture model are represented as a performance
prediction framework in [9]. In this framework, a queueing network model (QNM) P
models the component infrastructure by identifying the main components of the sys-
tem, and noting where queuing delays occur.

An architect has several alternatives to fulfill the same functionality using EJB
technology. For example, a server side EJB component can be made either stateless
or stateful, simply by setting an attribute. Each architecture alternative impacts the
service time of the component container. Therefore the component architecture model
/" is a function of the service time of the components participating in an architecture
A. The output of /' is the input to P.

Performance profiles are required to solve the parameter values of the performance
model. They are obtained from benchmarking measurements. The benchmark appli-
cation differs from an application prototype in that the business logic of the bench-
mark is much simpler than a prototype. The operations of the benchmark are designed
simply to exercise performance sensitive elements of the underlying component con-
tainer. The aim is to determine the performance profile of the container itself, and not
to evaluate the overall application performance (the traditional aim of benchmarking).

Performance Prediction of J2EE Applications Using Messaging Protocols 5

By using a simple benchmark application, we can remove any unpredictability in
performance due to application business logic.

The model is finally populated using the performance profile and used for per-
formance prediction. This approach enables performance prediction during the design
of software applications that are based on a specific component technology.

A comprehensive description of this approach can be found in [9][10]. It is de-
signed to support the following use cases during performance engineering:

e Support efficient performance prediction under architecture changes where
components are added or modified.

e Capacity planning of the system, such as predicting the average response time,
throughput and resource utilization under the expected workload.

¢ Reveal performance bottlenecks by giving insight into possible flaws in archi-
tecture designs.

The requirements of this approach are:

¢ Ensuring a reasonable level of accuracy for performance prediction. According
to [12] (page 116), prediction error within 30% is acceptable.

e Cost effective. The approach must be faster than prototyping and testing.

5 The Performance Model

A performance model should capture the component container behavior when proc-
essing a request from a client. For this reason, we focus on the behavior of the con-
tainer in processing EJB method invocation requests. As EJB containers process
multiple simultaneous requests, the threading model utilized must also be represented.
The QNM in Fig. 1 models the main infrastructure components involved and their
interactions.

Closed Queue Open Quene

Clients

Request queue Container

[T TIO=!]

DataSource queue

Fig. 1. The QNM model of a J2EE server with a JMS Queue

The model comprises two sub-networks, a closed and an open QNM. A closed
QNM is appropriate for components using synchronous communication, as compo-
nent containers employ a finite thread pool that effectively limits the maximum re-
quests active in the server. An open QNM models asynchronous communication as a
component container sends a message to a JMS queue, and the message is forwarded
to a message driven bean (MDB) to process the business logic.

6 Yan Liu and Ian Gorton

In the closed model, application clients represent the ‘proxy clients!’ (such as serv-
lets in a web server) of the EJB container. Consequently, a client is considered as a
delay resource and its service time equals the thinking time between two successive
requests. A request to the EJB container is interpreted and dispatched to an active
container thread by the request handler. The request handler is modeled as a single
server queue with no-load dependency. It is annotated as Request queue in the QNM.

The container is multi-threaded, and therefore it is modeled as a multi-server
queue with the thread capacity m; and no load dependency. It is annotated as Con-
tainer in the QNM. The database clients are in fact the EJBs that handle the client
request. Database access is therefore modeled as a delay server with load dependency.
Its active database connections are denoted as & in the QNM, and the operation time
at the database tier contributes to the service demand of the DataSource queue.

In the open model, asynchronous transactions are forwarded by the container to a
queue managed by a JMS server. The JMS server is multi-threaded, and has a thresh-
old for flow control to specify the maximum number of the messages pending in the
JMS server. Assuming that the arrival rate of requests is a Poisson distribution with
rate A requests per second and the service time is exponential, we can model the JMS
server as an M/M/m’/W queue, where m’ is the number of JMS server threads and W
is its flow control threshold.

A message is subsequently removed from the queue by a MDB instance, which
implements the business logic. MDBs are asynchronous message-handling fagades
for data access carried out in entity beans. MDB instances are also managed by the
EJB container and are associated with a dedicated server thread pool. So the MDB
queue is modeled as a load-independent multi-server queue.

The implementation of an EJB container and JMS server is complex and vendor
specific. This makes it extremely difficult to develop a performance model that covers
all the relevant implementation-dependent features, especially as the EJB container
source code is not available. For this reason, our quantitative model only covers the
major factors that impact the performance of applications, and ignores many other
factors that are less performance sensitive. Specifically, we do not currently consider
workloads that include large data transfers. As a result, the network traffic is ignored
and the database contention level is reduced.

5.1 The Architecture Model

The task of solving the QNM in Fig. 1 involves obtaining the service demand of each
queue. We need to calibrate the component container that will host the alternative
designs in order to obtain the service demands of each request on each queue.

The service demand of the Request queue equals the service time of a request be-
ing accepted by the server and dispatched to the Container queue. It can thus be con-
sidered as a constant. The Container, DataSource, JMS and MDB queues are respon-
sible for processing the business logic and this comprises the majority of the service
demands on these queues.

! As opposed to clients driven by human interaction, proxy clients such as servlets continually
handle requests that arrive at a web server.

Performance Prediction of J2EE Applications Using Messaging Protocols 7

Fig. 2 shows the state diagram for processing transactions in an EJB container.
The container has a set of operations that a request must pass through, such as initial-
izing a set of container management services, invoking the generated skeleton code
for a bean instance, registering a transaction context with the transaction manager,
finalizing a transaction and reclaiming resources.

e

Fig. 2. Overall state diagram of the J2EE server

These container operations are identical for all requests, and the service time can
again be considered constant, denoted as 7}, . For convenience, these states as a whole

are referred to as a composite, CS. Synchronous transactions are processed by the
Container queue, modeled as a compound state machine ContainerSM with a prob-
ability pguchronouss While asynchronous messages are posted to the JMS server, mod-
eled as a compound state machine JMSSM with a probability pagnchronous. Contain-
erSM and JMSSM are further decomposed into models of different component archi-
tectures. The service times of operations in Container, DataSource, JMS and MDB

queue are modeled as f,, f,, f; and f, respectively.

From the above analysis, we know that f, and f, are determined by the compo-

nent architecture in ContainerSM (e.g. optimizing data access to an entity bean by
different cache management schemes). The comprehensive architecture models are
developed in [9][10]. The models for container managed persistence of entity beans
are listed below as an example:

f. =hT, +(1-h)T, @
Ja = Tﬁnd +Typea + PT @)

Store

o/ is the entity cache hit ratio;

¢ p is the ratio of operations updating entity data;

e T is the service time for the container to access the entity data in its cache;

e T, is the service time of the container to load/store an entity bean instance
from/to disk;

® Tna is the service time of identifying the entity instance by its primary key;

® Tiaa1s the service time of loading data from the database into the entity bean
cache;

® Tyore is the service time of storing updates of an entity bean data.

