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Introduction

Although semigroups of transformations appear already in the original work
of S. Lie as part of his efforts to find the right analogue of the theory of substitu-
tions in the context of differential equations, it was Ch. Loewner who first studied
such objects purposely [Loe88]. He considered semigroups of self-maps of the unit
disc as a tool in geometric function theory. In the late seventies, subsemigroups
of Lie groups were considered in relation to control systems with symmetries (cf.
[JK81a,b], [Su72]). At about the same time Ol’shanskii introduced such semigroups
to in.order to study the representation theory of infinite dimensional classical groups
([O1s91]). Moreover causality questions led people in relativity theory to consider
subsemigroups of Lie groups generated by one-parameter semigroups as well. Mo-
tivated by this evidence Hofmann and Lawson worked out, in [HoLa83], systematic
groundwork for a Lie theory of semigroups. These efforts eventually resulted in the
monograph [HHL89].

In the meantime it has become increasingly clear that certain subsemigroups
of Lie groups play a vital role in the harmonic analysis of symmetric spaces and
representation theory. The purpose of this book is to lead the reader up to these
applications of Lie semigroup theory. It is intended for a reader familiar with basic
Lie theory but not having any experience with semigroups. In order to keep the
overlap with [HHL89] to a minimum we have occasionally quoted theorems without
proof from this book — especially when the version there is still the best available.
On the other hand the last few years have seen rapid development, and so we are
able to present improved versions of many results from [HHL89] with completely
new proofs.

This book is not meant to be comprehensive. We have left out various topics
that belong to the theory but, at the time being, don’t show close connections
with the applications we have in mind. Also we have chosen to focus on closed
subsemigroups of Lie groups and thereby avoid certain technical complications.

A Lie semigroup is a closed subsemigroup S of a Lie group G which, as a
closed subsemigroup, is generated by the images of all the one-parameter semigroups

vx:RY = S, t — exp(tX).

The set of all these orie-parameter semigroups can be viewed as a set L(S) in the
Lie algebra g of G. It is a closed convex cone satisfying

X L(S) = L(S) VX € L(S)Nn —L(S),

an algebraic identity which reflects the fact that S is invariant under conjugation by
elements from the unit group SN S~!. Convex cones satisfying these properties are
called Lie wedges and play the role of Lie algebras in the Lie theory of semigroups.
Following the general scheme of Lie theory one wants to study the properties of Lie
semigroups via their Lie wedges using the exponential function for the translation
mechanism. In Chapter 1 we describe the essential features of this mechanism. In
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particular the topological and algebraic obstructions that arise when one tries to
find a Lie semigroup with prescribed Lie wedge are pointed out. The problem,
called the globality problem, has not been solved in a definitive way, but one has
far-reaching results which essentially reduce the globality problem to finding the
maximal subsemigroups of Lie groups. The topic of maximal subsemigroups is
taken up again later in the book (Chapter 6 and Chapter 8).

The main result of Chapter 1 is Theorem 1.35 which characterizes the Lie
wedges that occur as the tangent wedge of a Lie semigroup in terms of the existence
of certain functions on the group G. In order to prove it we use a result about
ordered homogeneous spaces which is presented only later, in Chapter 4 (Cor.
4.22). We chose this way of organizing things to be able to present the globality
problem without too much technical ballast. Moreover the material about ordered
homogeneous spaces presented in Chapter 4 is of independent interest even though
the separation between semigroup and ordered space aspects may seem artificial to
insiders.

Chapter 2 is completely devoted to a list of examples which either have model
character or serve as counterexamples at some point. In Chapter 3 we present
various geometric and topological properties. Most importantly, it is shown that
the interior of a Lie semigroup S is dense if L(S) generates g as a Lie algebra (cf.
Theorem 3.8). Also important for later applications is the fact that Lie semigroups
admit simply connected covering semigroups (cf. Theorem 3.14).

In Chapter 5 some more consequences of the theory of ordered homogeneous
spaces are listed. Among other things it is shown that the unit group of a Lie
semigroup is connected. Moreover we explain how the existence of a Lie semigroup
with prescribed Lie wedge in a given connected Lie group G is related to the
existence of such a Lie semigroup in a covering group of G.

Chapter 6 deals with the characterization of maximal subsemigroups with
interior points in simply connected groups with cocompact radical. They all have
half-spaces as tangent wedges and a closed subgroup of codimension one as unit
group. Finally we show how one can use this result to solve some controllability
questions on reductive groups.

The main result of Chapter 7 is Lawson’s Theorem on Ol’shanskii semi-
groups which in particular says that for a connected Lie group G sitting inside
a complexification Gg with a Lie algebra g which admits a pointed Ad(G)-
invariant cone W with interior points, then (g, X) — gexpiX is a homeomorphism
G x W — Gexp:W onto a closed subsemigroup of Gg. This semigroup is called
a complex Ol’shanskii semigroup. Before we get there we show what consequences
the existence of invariant cones with interior points has for a Lie algebra g, give a
characterization of those Lie algebras containing pointed generating invariant cones,
and describe the complete classification of such cones.

Complex Ol’shanskii semigroups and their real analogues appear in many
different contexts. They consist of the elements of G¢ which map the positive part
of the ordered homogeneous space Gg/G into itself, where the ordering is induced
by the invariant cone field associated to the invariant cone. In the semisimple case
they (at least the ones coming with the maximal invariant cones) can also be viewed
as semigroups of compressions

compr(0) = {g € Gg: .0 C O}
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of certain open G-orbits O in suitable flag manifolds associated with Gg. In
order to show this we study the open G-orbits on complex flag manifolds via the
symplectic (in fact, pseudo-Kéhler) structure that is given on these orbits. Using the
results obtained in this process one can eventually show that complex Ol’shanskii
semigroups for maximal invariant cones are maximal subsemigroups.

Apart from their different geometric realizations, complex Ol’shanskii semi-
groups occur as the natural domains in Gg to which one can analytically continue
highest weight representations of G. We show in Chapter 9 how this is done for gen-
eral G. Moreover we give some examples of this continuation procedure such as the
holomorphic discrete series representations and the metaplectic representation which
gives rise to Howe’s oscillator semigroup. The largest subrepresentation of L?(G)
- for general G - which admits an analytic continuation to a complex Ol’shanskii
semigroup leads to a Hardy space of holomorphic functions on this semigroup sat-
isfying an L2-condition on G-cosets. This Hardy space coincides with the classical
notions for tube domains and polydiscs if G is a vector group or a torus.

In Chapter 10 we collect the results presented in this book for semigroups
related to SI(2).

For the orientation of the reader we conclude this introduction with some
comments on the overlap with [HHL89).

Apart from some elementary properties of Lie wedges and cones Chaper 1 is
independent of [HHL89]. The idea of monotone functions is only briefly touched in
[HHL89] and the corresponding results we present in Chapter 1 are stronger and
the proofs less complicated.

Some of the characteristic examples such as 2.1, parts of 2.2, 2.9 — 2.11
described in Chapter 2 occur also in [HHL89]. We have included them for the
convenience of the reader since they illuminate some specific features of the theory.

Chapter 3 is independent of [HHL89]. The results of Section 3.2 were known
at that time, but the new proof of Hofmann and Ruppert is shorter and it offers
some new insights.

Ordered homogeneous spaces do also occur in [HHL89], where they are used
to obtain the results about the structure of Lie semigroups near their group of units
(cf. Sections 4.2, 4.3). The results on the global structure of ordered homogeneous
spaces concerning properties such as global hyperbolicity are new (cf. Sections 4.4,
4.7).

The Unit Group Theorem and the Unit Neighborhood Theorem (cf. Section
5.1) were already proved in [HHL89]. Here we obtain these results out of a general
theory of ordered homogeneous spaces.

Sections 6.2 — 6.6 are more or less contained in [HHL89]. The results in Sections
6.1 and 6.7 are new and complement the existing results in an interesting way. Since
the area of maximal subsemigroups, in particular of maximal subsemigroups in
simple groups, still presents many open problems, we decided to include the whole
state of the theory of maximal semigroups in Chapter 6. We note also that the
Sections 8.1 and 8.6 contain recent results on maximal subsemigroups in semisimple
Lie groups complementing the material in Chapter 6 which is mostly concerned with
groups G, where L(G) contains a compact Levi algebra.

Even though the theory of invariant cones and their classification by inter-
sections with compactly embedded Cartan algebras is contained in [HHL89], our
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Section 7.1 does not significantly overlap with [HHL89]. Our approach to invariant
cones is based on coadjoint orbits. It seems to be more fruitful and far-reaching
than the direct approach. Those results on invariant cones which we need in the
sequel are proved along these lines. This made it possible to shorten some of the
proofs considerably.

The remainder of Sections 7 — 9 is absolutely independent of [HHL89]. For
more recent results lying already beyond the scope of this book and concerning the
material contained in these sections we refer the reader to [Ne93a-f].

User’s Guide

Since many results in this book do not depend on every preceding chapter,
we give a list containing for each section, the set of all other sections on which it
depends. If, e.g., Section 4.5 depends on Section 4.4 and Section 4.4 depends on
Section 4.3, then Section 4.3 appears only in the list of Section 4.4. So the reader
has to trace back the whole tree of references by using the lists of several sections.
Nevertheless we hope that this is helpful to those readers interested merely in some
specific sections of the book.

Chapter 1:

1.2[1.1],1.3 [1.1],1.4 [1.3],1.8 [1.7], 1.9 [1.1, 1.8], 1.10 [1.4, 1.9]
Chapter 2:

2.3 [1.7], 2.6 [1.4, 1.5, 1.9], 2.7 [1.10]

Chapter 3:

3.1[1.5,1.10, 2.2, 2.7, 3.3 [1.10, 2.11], 3.4 [1.10, 3.2], 3.5 [3.4], 3.6 [3.5]
Chapter 4:

4.2 (1.9, 4.1], 4.3 [1.4, 1.9, 4.1, 4.2], 4.4 [1.7, 4.3], 4.5 [4.3], 4.6 [3.2, 4.3], 4.7
[4.4, 4.6]

Chapter 5:

5.1 [1.4, 1.8, 4.3], 5.2 [1.10, 3.2, 4.3, 5.1], 5.3 [3.2, 4.4, 5.1], 5.4 [3.1, 4.2, 5.3],
5.5 [2.5, 5.4]

Chapter 6:

6.2 [2.9], 6.3 [1.7, 6.2], 6.4 [6.3], 6.5 [6.3], 6.6 [6.5], 6.7 [1.2, 1.10, 3.2, 4.2, 4.3,
6.6]

Chapter 7:
7.1[1.2], 7.2 (1.3, 7.1], 7.3 [4.2, 5.3, 7.2]
Chapter 8:
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1. Lie semigroups and their tangent wedges

The basic feature of Lie theory is that of using the group structure to translate
global geometric and analytic problems into local and infinitesimal ones. These
questions are solved by Lie algebra techniques which are essentially linear algebra
and then translated back into an answer to the original problem. Surprisingly
enough it is possible to follow this strategy to a large extend also for semigroups,
but things become more intricate. Because of the missing inverses one has not only
to deal with linear algebra but also with convex geometry at the infinitesimal level.
Similarly to the group case the Lie algebraic counterpart of a subsemigroup can
either be defined as geometric (sub-)tangent vectors to the semigroup or a family
of one-parameter semigroups contained in the semigroup (or at least in its closure).
It turns out to be a convex cone in the Lie algebra, possibly containing non-trivial
vector subspaces. For this reason we prefer the notion wedge. It is well known from
Lie group theory that Lie subalgebras always correspond to analytic subgroups,
but these analytic subgroups need not be closed, i.e., embedded manifolds. This
difficulty of course does not disappear in the context of semigroups. But in order
to avoid undue technical complications we will often simply restrict our attention
to closed subsemigroups of Lie groups. Apart from the additional problems on the
infinitesimal level caused by the replacement of vector spaces by wedges there is
a new, even more serious, obstacle to a successful translation mechanism in the
semigroup context: It is much harder to translate answers back to the global level
since it turns out that the relation between Lie wedges and semigroups is quite
complicated. In this chapter we study a class of semigroups which can be recovered
from their Lie wedges, but before we do that, we collect in Section 1.1 a few facts
about the geometry of wedges.

In Section 1.2 we consider wedges in vector space V' which are invariant under
the linear action of a compact group K . Of particular interest in this setting is the
projection mapping which maps V onto the submodule of K -fixed points. These
results will be used in Chapter 7 for invariant cones in Lie algebras and their duals.

Section 1.3 is a self-contained introduction into the characteristic function of
a cone and its basic properties. This function is a basic tool in the study of groups
acting on cones as automorphisms. It proves particularly valuable for non-compact
groups.

In Section 1.4 we develop the notion of a Lie semigroup which will be funda-
mental throughout this book. To illustrate the condition that a Lie semigroup is
determined by its infinitesimal data, a Lie wedge in the corresponding Lie algebra,
we deal in some detail with the examples of compression semigroups of Lorentzian
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cones and Euclidean balls. As already mentioned above, the relation between Lie
semigroups and Lie wedges incorporates some new difficulties which do not arise for
Lie algebras and groups. These diffculties are described in a categorial framework
in Sections 1.5 and 1.6.

In the remainder of Chapter 1 we are dealing with the globality problem,
i.e., the problem to find for a given Lie wedge a Lie semigroup. The concept of a
monotone function is a basic tool to cope with the globality problem. It is developed
in Section 1.7 and some deeper insight into the existence of smooth and analytic
monotone functions are gained in Section 1.8. The characterization of global Lie
wedges by the existence of certain monotone functions is given in Section 1.9 but we
postpone a technical part of the proof to Chapter 4, where we will use the theory
of ordered homogeneous spaces to complete it. The last section contains various
criteria for the globality of a Lie wedge which are deduced from the characterization
from above and which will be useful throughout the other chapters.

1.1. Geometry of wedges

Let L be a finite dimensional vector space. A subset W is called a wedge if
it is a closed convex cone. The vector space H(W) := W N —W is called the edge
of the wedge. We say that W is pointed if the edge of W is trivial and that W
is generating if W — W = L. We denote the dual of L with L*. The dual wedge
W* C L* is the set of all functionals which are non-negative on W. Furthermore
we set algint W :=intw_w W and W+ := H(W*). The following proposition is a
collection of elementary facts about the relations between wedges and their duals.

Proposition 1.1. We identify the dual of L* with L. Then the following
assertions hold for a wedge W C L:

G W) =w.
(11) W 1s generating if and only if W* is pointed and, conversely, W is pointed
if and only if W* is generating.
(iii) w € algint W* if and only if w(z) > 0 for all z € W\ H(W) and

algintW = {z € W :w(z) >0 for all we W*\ HW™)}.

(iv) For a family (Wi)ier of wedges in L we have that

(W =W and Wiy =W

i€l i€l i€l €]

(v) If V C L s a convex cone, then V = (V*)*, algintV = algintV, and
V =algint V.
Proof. (i) It is clear that W C (W*)*. Let = ¢ W. Then, by the Theorem of
Hahn-Banach, there exists a w € W* with w(z) < 0. Therefore = ¢ (W*)*.

(i1) Note first that
HW*) =W+ =W -w)™L.
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Therefore W* is pointed if and only if W — W = L, i.e., if W is generating. The
dual assertion follows from (i) by applying the first one to W*.
(iii) In view of (i), it suffices to prove that

algint W ={z € W:w(z) >0 forall we W*\ H(W")}.
“C”: Let z € algint W. Then 0 € intw_w(W —z),sothat W-W =W — Rtz.
If we W* and w(z) =0, then

w(W -W)=w(W)C R

Therefore w(W — W) = 0 since w is linear, and hence w € H(W*).
“D”: Suppose that z ¢ algint W. Then the Theorem of Hahn-Banach implies the
existence of a linear functional w' # 0 on W — W such that w'(W) C R* and
w'(z) = 0. Extending w' to w € L* we find that w € W* \ H(W*). This proves
the inclusion D.
(iv) A linear functional is non-negative on )., W; if and only if it is non-negative

on every wedge W;, thus
O wor =\ wr
i€l el
Replacing each wedge in this identity by its dual it follows with (i) that
O wiH =W
i€l i€l
So the assertions follow from (1) and (v).
(v) Since every linear functional on L is continuous, it is clear that V* = (V)*.
Therefore (V*)* = V follows from (i). To prove the rest of (v), in viewof V.C V-V,
we may assume that V is generating. First we note that V +intV CintV.
Let z € intV and v € V. Then v+ tz € intV for all ¢t > 0 and therefore
v € ntV. To see that intV C intV (the other inclusion is trivial), let z € intV
and U a 0-neighborhood with + —U C V. Set W :=UNintV. Then z — W is an
open subset of V and therefore it contains an element of v € V. Then v =z —w
holds with we W, ,soz=v+w eV +intV CintV. ]

The geometry of a closed convex set in a finite dimensional vector space is
completely determined by the set of extremal points . But between extremal points
and the whole set one has interesting sets, the faces, which share properties of convex
sets and extremal points. We only give the definitions in the context of wedges: Let
F, W C L be wedges. Then we set

LF(W) =W+ F—-F and TF(W) b H(LF(W)) = LF(W) n —LF(W).
The fact that W+ F —F is convex and stable under multiplication with non-negative
scalars shows that Lp(W) is a wedge. Note that Lp(W)=W —F if FCW. We
say that a wedge FF C W is an ezposed face of W if

F=WnTp(W)

and a face of W if its complement W \ F is an ideal in the additive semigroup
W . The geometric meaning of these concepts will be clarified by the following two
propositions. We write F(W) for the set of faces of W and F.(W) for the set of
exposed faces of W.

The following proposition describes how the faces of W and its dual wedge
are related.
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Proposition 1.2. The set F(W) 1s stable under arbitrary intersections and
therefore a complete lattice with H(W) as minimal and W as mazimal element.
Moreover, the following assertions hold.

(i) The mappings
op* : Fo(W*) — F(W), Er» WNE*

and

op : Fe(W) = Fo(W*), F» W*Nn F*

are order reversing bijections mapping a face to its "opposite” face in the dual
cone. Moreover, for every subset E C W* the set

op*(E):= E+*nW

18 an ezposed face of W and for every exposed face there ezists w € W* with
F=kerwnW.

(i1) For a wedge FF C W we have that
Le(W)* =W*n FL.

Proof. Let (Fi)ies be a family of exposed faces of W and F :=(;c; Fi. Then
F' is a wedge. The relation

FCWNTe(W)CWNTs(W)=F, Viel

shows that FF = W N Tp(W) € F(W). We conclude that every non-empty subset
in Fe(W) has an infimum. Thus this partially ordered set is a complete lattice.
That H(W) and W are the minimal and maximal elements, follows directly from
the definition.
(i1) This follows from the definition of Lg(W) and from Proposition 1.1(iv).
(i) Let F € F.(W). Then, in view of Proposition 1.1(ii) and (iv), we have
(1.1) F* = (WNTp(W))* = W* —op(F) = Lop(r)(W*).
Therefore
Topr)y(W*)NW* = W* N F* = op(F)

shows that op(F) € F.(W*). Equation (1.1) and (ii) imply that

Op* oop = id}',,(W) .
Replacing W by W* we also find that

OpOOp* = id]:e(‘,V*) .

Let EC W* and F := Tg(W*) N W* be the exposed face generated by E.
Then
op”(E) = Lg(W*)" = Lp(W")" = op™(F)

shows that op*(E) is an exposed face of W. Finally, suppose that F € F.(W) and
take w € algintop(F'). Then, by Proposition 1.1(iii),

kerw NW = op(F)X N W = op* oop(F) = F.



