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Foreword

This monograph is devoted to the potential theory of stable stochastic
processes and related topics, such as the subordinate Brownian motions (in-
cluding the relativistic process) and Feynman-Kac semigroups generated by
certain Schrodinger operators.

The stable Lévy processes and related stochastic processes play an impor-
tant role in stochastic modelling in applied sciences, in particular in financial
mathematics, and the theoretical motivation for the study of their fine prop-
erties is also very strong. The potential theory of stable and related processes
naturally extends the theory established in the classical case of the Brownian
motion and the Laplace operator.

The foundations and general setting of probabilistic potential theory were
given by G.A. Hunt [92](1957), R.M. Blumenthal and R.K. Getoor [23](1968),
S.C. Port and J.C. Stone [130](1971). K.L. Chung and Z. Zhao [62](1995) have
studied the potential theory of the Brownian motion and related Schrodinger
operators. The present book focuses on classes of processes that contain the
Brownian motion as a special case. A part of this volume may also be viewed
as a probabilistic counterpart of the book of N.S. Landkof [117](1972).

The main part of Introduction that opens the book is a general presen-
tation of fundamental objects of the potential theory of the isotropic stable
Lévy processes in comparison with those of the Brownian motion (presented
in a subsection). The introduction is accessible to a non-specialist. Also the
chapters that follow should be of interest to a wider audience. A detailed
description of the content of the book is given at the end of Chapter 1.

Some of the material of the book was presented by T. Byczkowski,
T. Kulezycki, M. Ryznar and Z. Vondracek at the Workshop on Stochas-
tic and Harmonic Analysis of Processes with Jumps held at Angers, France,
May 2-9, 2006. The authors are grateful to the organizers and to the main
supporters of the Workshop — the CNRS, the European Network of Harmonic
Analysis HARP and the University of Angers — for this opportunity, which
gave the incentive to write the monograph.



vi Foreword

The book was written while Z. Vondracek was visiting the Department of
Mathematics of University of Illinois at Urbana-Champaign. He thanks the
department for the stimulating environment and hospitality. Thanks are also
due to Andreas Kyprianou for several useful comments. The editors thank
T. Luks for critical reading of some parts of the manuscript and for some of
the figures illustrating the text.
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Chapter 1
Introduction

1.1 Bases of Potential Theory of Stable Processes

In 1957, G. A. Hunt introduced and developed the potential theory of Markov
processes in his fundamental treatise [92]. Hunt’s theory is essentially based
on the fact that the integral of the transition probability of a Markov process
defines a potential kernel:

U, g)= / plt, z, )t
0

One of the important topics in the theory is the study of multiplicative
functionals of the Markov process, corresponding either to Schrédinger per-
turbations of the generator of the process, or to killing the process at
certain stopping times. Among the most influential treatises on this subject
are the monographs (23] by R. M. Blumenthal and R. K. Getoor, [60] by
K. L. Chung, [22] by W. Hansen and J. Bliedtner, and [62] by K. L. Chung
and Z. Zhao.

Harmonic functions of a strong Markov process are defined by the mean
value property with respect to the distribution of the process stopped at the
first exit time of a domain. An important case of such a function is the
potential of a measure not charging the domain, thus yielding no “sources”
to change the expected occupation time of the process.

To produce specific results, however, the general framework of Hunt’s the-
ory requires precise information on the asymptotics of the potential kernel of
the given Markov process. For instance, the process of the Brownian motion
in R® is generated by the Laplacian, A, and yields the Newtonian kernel,
T — c|z — y|~!. Here y is the source or pole of the kernel. When z is fixed
and |y| — oo, we have that, regardless of z, |z — y|~™!/|z¢o — y|~! — 1, which
eventually leads to the conclusion that nonnegative functions harmonic on
the whole of R® must be constant.

Explicit formulas for the potential kernel are rare. Even the Brownian
motion killed when first exiting a subdomain of R? in general leads to a

K. Bogdan et al., Potential Analysis of Stable Processes and its Extensions, 1
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2 1 Introduction

transition density and potential kernel which are not given by closed-form
formulas, and may be even difficult to estimate.

A primary example of a jump process is the isotropic a-stable Lévy process
in R4, whose potential kernel is the M. Riesz’ kernel. The analytic theory of
the Riesz kernel, the fractional Laplacian A®/2, and the corresponding a-
harmonic functions had been well established for a long time (see [133] and
[117]). However, until recently little was known about the boundary behavior
of a-harmonic functions on sub-domains of RY.

We begin the book by presenting some of the basic objects and results of
the classical (Newtonian) potential theory (a = 2), and Riesz potential the-
ory (0 < a < 2). We have already mentioned the well known but remarkable
fact that the (Newtonian) potential theory of the Laplacian can be inter-
preted and developed by means of the Brownian motion ([71]). An analogous
relationship holds for the (Riesz) potential theory of the fractional Laplacian
and the isotropic a-stable Lévy process. We pursue this relationship in the
following sections. We like to remark that A®/? is a primary example of a
nonlocal pseudo differential operator ([97]) and we hope that a part of our
discussion will extend to other nonlocal operators. Apart from its significance
in mathematics, the fractional Laplacian appears in theoretical physics in the
connection to the problem of stability of the matter [118]. Namely, the oper-
ator I — (I — A)'/2 corresponds to the kinetic energy of a relativistic particle
and A'/? can be regarded as an approximation to I — (I — A)'/?, see, e.g.,
(45], [134].

In what follows, functions and sets are assumed to be Borel measurable.
We will write f ~ g to indicate that f and g are comparable, i.e. there is a
constant ¢ (a positive real number independent of z), such that ¢~ f(z) <
g(z) < ef(x). Values of constants may change from place to place, for instance
f(z) < (2¢+ 1)g(x) = cg(x) should not alarm the reader.

1.1.1 Classical Potential Theory

We consider the Gaussian kernel,

1 2
_ —|x|*/4t d
gt(x) —(41rt)d/2e , a:GIJR , t>0. (1.1)
It is well known that {g;, ¢ > 0} form a convolution semigroup: g * g = gs1t,
where s,t > 0. This property is at the heart of the classical potential theory.
Complicating the notation slightly, we define transition probability

g(s,z,t, A) = / g-s(y)dy, s<t,rxecRY AcCR?. (1.2)
A-zx
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The semigroup property of {g;} is equivalent to the following Chapman-
Kolmogorov equation

/ g9(s,z,u,dz)g(u, z,t,A) = g(s,z,t,A), s<u<t,z¢€ RY, AcCR?.
Rd
If d > 3 then we define and calculate the Newtonian kernel,
o0
N(z) = / ge(z)dt = Agoz|*~¢, zeRe.
0

Here and below

Aany =T((d ~7)/2)/2"7?T(7/2))). (1.3)

The semigroup property yields that N * g5(z) = f:o gi(z)dt < N(x). Recall
that a function h € C?(D) is called harmonic in an open set D C R? if it
satisfies Laplace’s equation,

Ah(z) = a2h(?) =0, zeD. (1.4)

It is well known that N is harmonic on R? \ {0}. Let B(a,r) = {z € R?:
|z—a| < r}, wherea € R, 7 > 0. Wealsolet B, = B(0,7), B = B, = B(0,1).
The Poisson kernel of B(a,r) is

_D(d/2)r* — |z —al?

P(z,2) = 2nd/2r |z — z|d

, z € B(a,r), z€0B(a,r). (1.5)

It is well known that if A is harmonic in an open set containing the closure
of B(a,r) then

h(z) = / h(z) P(z,z)o(dz), =z € B(a,r). (1.6)
dB(a,r)

Here o denotes the (d — 1)-dimensional Haussdorff measure on dB(a,r). We
like to note that P(z,z) is positive and continuous on B(a,r) x dB(a,r), and
has the following properties:

/ P(z,z)o(dz) =1, =z € B(a,r), (1.7)
dB(a,r)

lim P(z,z)o(dz) =0, wedB(a,r), §>0. (1.8)
=W J5B(a,r)\ B(w,5)
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It is also well known that for every z € 9B(a,r), P(-, z) is harmonic in B(a, ),
a property resembling Chapman-Kolmogorov equation if we consider (1.6) for
h(z) = P(z, z0). Consequently, if f € C(9B(a,r)), then the Poisson integral,

P(f](z) = / P(z,z) f(z)o(dz), =z € B(a,r), (1.9)
dB(a,r)

solves the Dirichlet problem for B(a,r) and f. Namely, P[f] extends to
the unique continuous function on B(a,r) U dB(a,r), which is harmonic in
B(a,r), and coincides with f on dB(a,r), see (1.8). In particular, P[1] =1,
compare (1.7).

An analogous Martin representation is valid for every nonnegative h har-
monic on B(a,r), '

h(z) = Ply)(x) := /aB( )P(IL‘,Z) u(dz), z € Bla,r). (1.10)

Here i > 0 is a unique nonnegative measure on 9B(a,r). We like to note that
appropriate sections of P[u] weakly converge to u ([107]), which reminds us
that in general the boundary values of harmonic functions require handling
with care.

By (1.5) we have that P(21,2) < (14 s/7)4(1 — s/r) "¢ P(x2, 2) if 21,22 €
B(a,s), s <, z € 0B(a,r). As a direct application of (1.10) we obtain the
following Harnack inequality,

¢ 'h(zy) € h(xa) < ch(xy), x1,72 € B(a,s), (1.11)

provided h is nonnegative harmonic. We see that h is nearly constant (i.e.
comparable with 1) on B(a,s) for s < r. If D is connected, then considering
finite coverings of compact K C D by overlapping chains of balls, we see
that nonnegative functions h harmonic on D are nearly constant on K, see
Figure 1.1.

Fig. 1.1 Harnack chain
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Despite its general importance, Harnack inequality is less useful at the
boundary of the domain because the corresponding constant gets inflated for
points close to the boundary. In fact, nonnegative harmonic functions present
a complicated array of asymptotic behaviors at the boundary, see (1.5). To
study the asymptotics, we first concentrate on nonnegative harmonic function
vanishing at a part of the boundary.

The Boundary Harnack Principle (BHP) for classical harmonic functions
delicately depends on the geometric regularity of the domain. To simplify
our discussion we will consider the following Lipschitz condition. Let d > 2.
Recall that I' : R?~! — R is called Lipschitz if there is A < oo such that

I(y) —T(z)| < Az —y|, y,zeRL. (1.12)
We define (special Lipschitz domain)
Dr = {z = (z1,...,24) € R? : 24> [(zy,...,%a-1)}- (1.13)

A nonempty open D C R? is called a Lipschitz domain if for every z € D
there exist r > 0, a Lipschitz function I : R¥~! — R, and an isometry T of
RY, such that D N B(z,7) = T(Dr) N B(z,r), that is, if D is locally isometric
with a set “above” the graph of a Lipschitz function.

Theorem 1.1 (Boundary Harnack Principle). Let D be a connected
Lipschitz domain. Let U C R? be open and let K C U be compact. There
exists C < oo such that for every (nonzero) functions u,v > 0, which are
harmonic in D and vanish continuously on D NU, we have

—uly) _ u(z) uly)
C lv(y) <U(_T) gcv(y), r,ye KND. (1.14)

Thus, the ratio u/v is nearly constant on D N K. Furthermore, under the
above assumptions,

lim existsas * -z € ODNK, (1.15)

z—z v(x

see Figure 1.2.

The theorem is crucial in the study of asymptotics and structure of general
nonnegative harmonic functions in Lipschitz domains. The proof of BHP for
classical harmonic functions in Lipschitz domains was independently given
by B. Dahlberg(1977), A. Ancona(1978) and J.-M. Wu(1978), and (1.15) was
published by D. Jerison and C. Kenig in 1982.

We now return to {g:}, and the resulting transition probability g. By
Wiener’s theorem there are probability measures P*, x € R, on the space
of all continuous functions (paths) [0,00) > t — X(t) € RY, such that
P*(X(0) = x9) =1 and P™(X; € A|X; = z) = g(s,z,t,A) = P*(X;_s €
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Fig. 1.2 The setup of
BHP

Wl

A), for zg,z € R4, 0 < s < t, A C R?. Recall that the construction of the
distribution of the process from a transition probability on this path space
requires certain continuity properties of the transition probability in time.
Here we have lim¢_ g;(z)/t = 0 (z # 0), which eventually allows the paths
to be continuous by Kolmogorov’s test or by Kinney-Dynkin theorem, see
[135]. Thus, X, is continuous. Denote X = (X;) = (X},..., X?), and let E*
be the integration with respect to P*. We have E°X{ = 0, E°(X})? = 2t.
Thus, X; = By, where B; is the usual Brownian motion with variance of
each coordinate equal to ¢t.

By the construction, E*f(X;) = [p. f(¥)9(0,7,t,dy) = [ou f(¥)g:(y —
x)dy for x € R?, t > 0, and nonnegative or integrable f. For a (Borel) set
A C R? by Fubini-Tonelli theorem,

oo
E’/ 1A(Xt)dt=/N(y—z)dy, zeRE,
0 A

Therefore N (-—x) may be interpreted as the density function of (the measure
of) the expected occupation time of the process, when started at z.

So far we have only considered X evaluated at constant (deterministic)
times ¢. For an open D C R? we now define the first exit time from D,

Tp =inf{t >0: X, & D}.
By the usual convention, inf() = co. 7p is a Markov (stopping) time. A
function h defined and Borel measurable on R? is harmonic on D if for every

open bounded set U such that U C D (denoted U CC D) we have

h(z) = E*h(X,,), zeU. (1.16)
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We assume here the absolute convergence of the integral. Since the P?-
distribution of X, = is the normalized surface measure on the sphere
OB(x, ), the equality (1.16) reads as follows:

h(z) = / h(y) P(0,y — z)o(dy),
9B(z,r)

if r € U = B(a,r), see (1.5) and (1.6). Thus, (1.16) agrees with the classical
definition of harmonicity.

The above definitions may and will be extended below to other strong
Markov processes, and (1.16) may be referred to as the “averaging property”
or “mean value property”.

We should note that (for the Brownian motion) the values of h on D¢ are
irrelevant in (1.16) because X, € OU C D in (1.16). For the isotropic stable
Lévy process, which we will discuss below, the support of the distribution
of the process stopped at the first exit time of a domain is typically the
whole complement of the domain. Indeed, as time (¢) advances, the paths
of the process may leave the domain either by continuously approaching the
boundary or by a direct jump to the complement of the domain. In particular,
a harmonic function should generally be defined on the whole of R%. It is of
considerable importance to classify nonnegative harmonic functions of the
process according to these two scenarios, see the concluding remarks in [38].

To indicate the role of the strong Markov property, we consider a nonneg-
ative function h on D¢ and we let h(z) = E*h(X;,), z € D. We will regard
h on D¢ as the boundary/external values of h, as appropriate for general
processes with jumps. It will be convenient to write A(z) for h(z) if z € De.
Let x € U CC D. We have

E*h(Xy,) = E*EXv h(X,,) = E°h(X,,) = h(z).

In particular we see that h is harmonic on U. The above essentially also proves
that {h(X,,)} is a martingale ordered by the inclusion of (open relatively
compact) subsets U of D, with respect to every P*, x € D. Closability of
such martingales is of some interest in this theory [27, 38], and relates to
the existence of boundary values of harmonic functions. For instance the
martingales given by Poisson integrals (1.10) are not closable for singular
measures . on dB(a,r).

1.1.2 Potential Theory of the Riesz Kernel

We will introduce the principal object of this book, namely the isotropic
(rotation invariant) a-stable Lévy process. We will construct the transition
density of the process by using convolution semigroups of measures. For a
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measure v on R%, we let || denote its total mass. For a function f we let
v(f) = [ fdv, whenever the integral makes sense. When |y| < oo and n =
1,2,... we let 4 = 4% ... x v (n times) denote the n-fold convolution of ~
with itself:

YU(f) = /f(-’tl +xo 4+ -+ + xp)y(dEy)y(dz2) - . . y(dxy) .

We also let 40 = dy, the evaluation at 0. If 7 is finite on R¢ then we define

= " (v — |7/60)"
P = exp t{y — yldo) = 3 L0

n=0

(1.17)

tn,yn
n!

oo
= (exp —t|7|do) * exp ty = e~ 1 Z , teR. (1.18)

n=0

By (1.18) each P} is a probability measure, provided v > 0 and t > 0, which
we will assume in what follows. By (1.17), P’ form a convolution semigroup,

PrePl=Pl,;, st20
Furthermore, for two such measures 71, 2, we have
Pt'h *Pt‘v'z =Pt‘¥1+72, t>0.

By (1.17),
lim (P = 60)/t =7 = [71do- (1.19)

In the following discussion for simplicity we will also assume that v has
bounded support and that v is symmetric: y(—A) = y(A), A C R The
reader may want to verify that

[weran =t [ WP <o, 0. 20)

As a hint we note that only the third term in (1.17) contributes to (1.20).
In particular,

P} (B(0,R)*) < t / lwIP(dy)/R2 — 0 as R— oco. (1.21)
er

We define
v(B) = Ad,—a/ |z2|~%"*dz, BcCR%. (1.22)
B



1 Introduction 9

It is a Lévy measure, i.e. a nonnegative measure on R? \ {0} satisfying

/mri min(|y|?, 1) v(dy) < co. (1.23)

We also note that v is symmetric. We consider the following operator, the
fractional Laplacian,

A*?u(z) = Ay _q lim uly) — u(x) ;. (1.24)
e e=0F JiyeR?: |y—z|>¢} ly — x|d+a

The limit exists if, say, u is C? near z and bounded on R?. The claim follows
from Taylor expansion of u at x, with remainder of order two, and by the
symmetry of v. We like to note that A = A®/2 satisfies the positive mazimum
principle: for every ¢ € C°(R?)

sup p(y) = ¢(x) 20 implies Ap(z) <O0.
yER

The most general operators on C°(R?) which have this property are of the
form

d
Ap(x) = Y aij(2) Dg, Dr,p(x) + b(2)Vip(2) + ¢(2)p(2)

1,j=1

+ / (¢lz+9) — (@) — V() Lyj<a) plo,dy).  (1:25)

Here yV is the scalar product of y and the gradient of ¢, and for every
z, a(z) = (ai;(z)); ;=1 is a real nonnegative definite symmetric matrix, the
vector b(z) = (bi(z))ZL, has real coordinates, g(z) < 0, and pu(z,) is a Lévy
measure. The description is due to Courrége, see [90, Proposition 2.10], [151,
Chapter 2] or [97, Chapter 4.5]. For translation invariant operators of this
type, a, b, q, and p are independent of z. For A®/? we further have a = 0,
b=0,g=0and p=v.

For r > 0 and a function ¢ on R? we consider its dilation ¢, (y) = ¢(y/7),
and we note that v(y,.) = r~*v(p). In particular, v is homogeneous: v(rB) =
r~y(B), B C R%. Similarly, if p € C®°(R?), then A%2(p,) = r~*(A*/2p),.

We will consider approximations of v and A%/? suggested by (1.24). For
0 < § < £ < 0o we define measures vsc(f) = f<5<ly|<e f(y)v(dy). We have

})tl/&'x: _ Pﬁ"s.x _ Pt"s-x g (Pt""-f _ 50) . (1.26)

When € — 0, the above converges (uniformly in §) to 0 on each C function
with compact support. This claim follows from Taylor expansion with the



