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Preface

The 2005 issue of the International Workshop on Practice and Theory in Public
Key Cryptography (PKC 2005) was held in Les Diablerets, Switzerland during
January 23-26, 2005. It followed a series of successful PKC workshops which
started in 1998 in Pacifico Yokohama, Japan. Previous workshops were succes-
sively held in Kamakura (Japan), Melbourne (Australia), Cheju Island (South
Korea), Paris (France), Miami (USA), and Singapore. Since 2003, PKC has been
sponsored by the International Association for Cryptologic Research (IACR). As
in previous years, PKC 2005 was one of the major meeting points of worldwide
research experts in public-key cryptography. I had the honor to co-chair the
workshop together with Jean Monnerat and to head the program committee.
Inspired by the fact that the RSA cryptosystem was invented on ski lifts, we
decided that the best place for PKC was at a ski resort. Jean Monnerat and I
hope that this workshop in a relaxed atmosphere will lead us to 25 more years
of research fun.

PKC 2005 collected 126 submissions on August 26, 2004. This is a record
number. The program committee carried out a thorough review process. In to-
tal, 413 review reports were written by renowned experts, program committee
members as well as external referees. Online discussions led to 313 additional
discussion messages and 238 emails. The review process was run using email and
the Webreview software by Wim Moreau and Joris Claessens. Every submitted
paper received at least 3 review reports. We selected 28 papers for publication on
October 28, 2004. Authors were then given a chance to revise their submission
over the following two weeks. This proceedings includes all the revised papers.
Due to time constraints the revised versions could not be reviewed again.

Double submissions, where authors send the same or almost the same paper
to multiple conferences that explicitly prohibit such practices, is an increasing
problem for the research community worldwide. I do regret that we had to reject
6 such submissions without consideration of their scientific merits. I would like
to thank the program chairs of other events who collaborated in this effort, in
particular Anne Canteaut, Joe Kilian, Choonsik Park, and Seongtaek Chee.

With the approval of the IACR Board of Directors, PKC 2005 delivered the
PKC Best Paper Award for the first time. The purpose of the award is to formally
acknowledge authors of outstanding papers and to recognize excellence in the
cryptographic research fields. Committee members were invited to nominate
papers for this award. A poll then yielded a clear majority. This year, we were
pleased to deliver the PKC Best Paper Award to Yevgeniy Dodis and Aleksandr
Yampolskiy for their brilliant paper “A Verifiable Random Function with Short
Proofs and Keys.” This paper concluded the workshop.

I would like to thank Jean Monnerat who accepted the responsibility to co-
chair the PKC 2005 workshop. I would like to thank the PKC steering committee
for their support and trust. The program committee and external reviewers
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worked extremely hard under a tight schedule. I heartily thank them for this
volunteer work. Acknowledgments also go to the authors of submitted papers
and the speakers who made the real meat of PKC 2005. I am grateful to Antoine
Junod and Julien Brouchier for their support with the Webreview software. I also
thank my assistants Pascal Junod, Thomas Baigneéres, Yi Lu, Gildas Avoine, and
Matthieu Finiasz for their help in the PKC 2005 organization. Special thanks
to Martine Corval who orchestrated the PKC 2005 logistics. We appreciate the
kind help of Christian Cachin in the advertising and registration process. We also
owe our gratitude to Kevin McCurley for spending a substantial amount of his
valuable time to set up the online registration website. We thank our generous
sponsors Gemplus and personally David Naccache, and HP Labs and personally
Wenbo Mao, for supporting PKC 2005. We also thank EPFL and IACR for
sponsoring this event. It was a very pleasant experience. Crypto is fun!

Lausanne, November 19, 2004 Serge Vaudenay
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A New Related Message Attack on RSA

Oded Yacobi! and Yacov Yacobi?

! Department of Mathematics, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA
oyacobi@math.ucsd.edu
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
yacov@microsoft.com

Abstract. Coppersmith, Franklin, Patarin, and Reiter show that given
two RSA cryptograms z°mod N and (az + b)*mod N for known con-
stants a,b € Zx, one can compute z in O(e log? €) Zn-operations with
some positive error probability. We show that given e cryptograms c; =
(aix +b;)*mod N, i = 0,1, ...e — 1, for any known constants a;, b; € Zn,
one can deterministically compute = in O(e) Zn-operations that depend
on the cryptograms, after a pre-processing that depends only on the con-
stants. The complexity of the pre-processing is O(e log? e) Zn-operations,
and can be amortized over many instances. We also consider a special
case where the overall cost of the attack is O(e) Zn-operations. Our
tools are borrowed from numerical-analysis and adapted to handle for-
mal polynomials over finite-rings. To the best of our knowledge their use
in cryptanalysis is novel.

1 Introduction

Messages with known relations may occur for example if an attacker pretends
to be the recipient in a protocol that doesn’t authenticate the recipient, and
in addition the message is composed of the content concatenated with a serial
number. In that case the attacker can claim that she didn’t receive the transmis-
sion properly and ask that it be sent again. The next transmission will have the
same content as the original but an incremented serial number. If the increment
is known we have a known relation. Other examples appear in [4].

Related message attacks can be avoided all together if before RSA-encryption
the message M is transformed using e.g. the OAEP function ([3]; There are
other methods and some issues are not settled yet, see [5]). This transformation
destroys the relations between messages and increases the message length.

Nevertheless it is useful to know the ramifications in case for some reason
one chooses not to use OAEP or similar methods (even though it is highly
recommended). For example RFID tags may pose tough engineering challenges of
creating very compact cryptosystems, and the trade-off must be known precisely.

In [4] it was shown that given two RSA cryptograms z¢ mod N, and (az + b)®
mod N for any known constants a,b € Zy one can compute z in O(elog? e) Zy-
operations with some small error probability.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 1-8, 2005.
© International Association for Cryptologic Research 2005



2 Oded Yacobi and Yacov Yacobi

We show that given e cryptograms ¢; = (a;z+b;)*mod N, i =0,1,...e—1, for
any known constants a;,b; € Zy, one can deterministically compute z in O(e)
Zn-operations, after doing O(elog®e) pre-computations that depend only on
the known constants. The descriptions of the protocol and the attack determine
the values of these constants. For example the attack described at the beginning
of this section has for all ¢ a; = b; = 1. The cost of the pre-computations can be
amortized over many instances of the problem.

Our problem could be solved by using the Newton expansion of ¢; = (a;x +
b;)¢ mod N, renaming z; = z7 and using linear algebra to find z;. However, our
method is more efficient.

We also show that in the special case where ¢; = (az +b-47)*mod N, i =
0,1,...e — 1, for any known constants a,b € Zy, where gcd(a, N) = ged(b, N) =
ged(e!, N) = 1, one can deterministically compute z in overall O(e) Zy-oper-
ations using

e—=1
x =a” b[(b%e!) Z ( ; ) ¢ (—1) 5 ]mod N

i=0

If any of the above ged conditions do not hold then the system is already broken.

It remains an open problem whether the new approach can improve the
general case of implicit linear dependence, i.e., suppose for known constants
ai, i = 0,1,2,...k, there is a known relation ), ; a;z; = ap among messages
T1,T2,...x. The current complexity of attacking this problem is O(e*/2k?) [4].

Our major attack-tools are divided-differences and finite-differences. These
tools are borrowed from numerical-analysis, and adapted to handle formal poly-
nomials over finite-rings. To the best of our knowledge their use in cryptanalysis
is novel.

For a survey of the work on breaking RSA see [2].

2 Main Result

2.1 Divided Differences

We borrow the concept of divided-differences from numerical analysis and adapt
it to handle formal polynomials over finite rings. This will allow us to extract the
message from a string of e cryptograms whose underlying messages are linearly
related. We specialize our definitions to the ring of integers modulo N, a product
of two primes (the “RSA ring”). All the congruences in this paper are taken
mudulo N.

Definition 1. Let h be a polynomial defined over the ring of integers modulo N,
and let xo,x1, ...z, be distinct elements of the ring such that (zo — z;)~! mod N
ezist for i = 0,1,..n. The nt* divided-difference of h relative to these elements
is defined as follows:
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[zi] = h:(il?,,),
_ [zo] = [z1]
[x(),.'L'l] = P
Lo, L1y .- Tn—1] — |T1,T2,.--Tn
[0, Z1, .o Tn] = [z0, 21 x()l]_ zL 1,22 ]

Let  be an indeterminate variable, and for ¢ = 0,1,..n, let z; = = + b;
for some known constants b; (these are the general explicit linear relations that
we assume later). We can now view the above divided differences as univariate
polynomials in z defined over Zy.

The following lemma is true for the divided difference of any polynomial
mod N, but for our purposes it is enough to prove it for the RSA polynomial
z° mod N. Related results are stated in [8]. Before beginning the proof we intro-

k

duce some notation borrowed from [7]. Let mx(y) = [ (y — ;). Then taking the
=0

derivative of my with respect to y we have for i < k

m(zi) = 1 (zi — )
0<j<k
J#i
By induction on k the following equality easily follows
h(z:)

7rk(131)

k
o0, 6] = 3 M
Let C¢(p) denote the t;), coefficient of the polynomial p, starting from the
leading coefficients (the coefficients of the highest powers). We use Ci[zg, ..zk]

as a shorthand for C([zo, ..zk])-

Lemma 1. Let [zg, ..., T,] be the n'® divided difference relative to the RSA poly-
nomial h(z) = z°mod N, and let zo,x1,...x, be distinct elements of the ring
such that (zo — x;)"'mod N ezist for i = 0,1,..n. Then (i) for 0 < n < e, if
(,%.) # 0mod N then deglzo,...,zn] = e — n. (i) Ce_pl20,Z1,..,Tn] = (e )
(an important special case is C[xo, 1, ..,Te—1] = emod N).

Comment: In practice the condition in claim (i) always holds, since e << N.

Proof. The claim is trivial for n = 0. For n > 1 we prove the equivalent propo-
sition that Cy [zg,...,zn,] =0fort =e,e—1,....,e—n+1 and Ce_y[zg, ..., Zs] is
independent of the b; and is not congruent to 0. We use the notations 1/b and
b~! interchangeably. We induct on n. When n =1

(xAbo) = (x4b1) Yo ()t — b5
[0, 21] = bo — b === by — b :

Note that by our assumption (bg — b1) ! mod N exist. So C.lzo,z1] =
and Ce—1[zo,z1] = e and indeed our claim is true for n = 1. For the 1nduct1ve
hypothesis let n = k — 1 and assume that C; [zo,...,2x—1] = 0 for t = e,e —
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1,..,e — (k— 1) + 1 and Ce_(k—1)[Z0, ..., Zk—1] is independent of the b; and is
not congruent to 0. We want to show that when n = k&, Cilzo, ..., zk] = 0 for
t=ee—1,..,e—k+1and Ce_[Zo, ..., zk| is independent of the b; and is not
congruent to 0.

The fact that C; [zo, ..., zx) = 0 for t = e,e—1,...,e—k+1 follows immediately
from the inductive hypothesis and Definition 1. It takes a little more work to
show that Ce_k[Zo, ..., zk] is independent of the b;.

Using (1):

(b g () T T
[0, z1, ..., k) = Z (@) Z (j)xj[ﬂc(ivo) + @) + ..+ ’lT;E(l'k)]

7=0

We want to show that C._g[zo, Z1, ..., :ck] is independent of the b;.
e T [ e e S
e—k|Z0, %1, -, Tk) = (7o) W;c(ml) ot )
So now it is sufficient to show that
(=1)° b Foret (1) bk
(bo — b1) -+ (bo — bk) (bo — bk) -+ - (be—1 — bk)

is independent of the b;.

We first multiply (3) by the necessary terms to get a common denominator.
We introduce some compact notation that will simplify the process. For a given
set of constants by, b1, ...bx define

8(h,i) = (b — b;)
5(hyi,§) = (bn — b;) (b — b;)3(5, 5)

®3)

6(7:0, ...,ik) = (bio - bil)(bio = b,z) L3 %) (bio = bik)é(il, ...,ik)
Similarly we can also define §; = §(0,1,...,7,...,k) where the bar denotes
that the index is missing (so if ¥ = 4 then §3 = 6(0,1,2,4,)). Then (3) becomes:
blgéo - b’f51 + -+ (—1)kb£5k (4)
6(0,1,...,k)

We want to show that (4) is independent of the b;. In fact it equals 1. To see
this consider the Vandermonde matrix:

1bo 62 --- b
I L
lbkb%”' bﬁ

We conclude from (2) that Ce_g[zo,1,..,2x] = (,°,), which is certainly
independent of the b;. This also implies that Ce_k[z0, Z1, .., Tx] is not congruent
to 0 when k < e. By induction we are done.
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2.2 Related-Messages Attack

Here we consider the general case where for i =0,1,...e—1, z; = a;z+b; mod N.
N = pq is an RSA composite (p and g are large primes, with some additional
restrictions which are irrelevant in the current discussion), and the constants
ai, b; are known. Of course it is sufficient to consider just the case where z; =
z + b;. We now show how to deterministically compute z in O(e) Zy-operations
after some pre-computation that depends only on the known constants. If the
constants b; hold for many unknown values of cryptograms z° then the cost of
pre-computations can be amortized and discarded. We show that the cost of the
additional computations that depend on the value of z is O(e).
Specifically, ), (zx) is independent of y and of z, hence for all k£ these
coefficients can be computed in advance. In that case the cost of computing
[0, Z1, -+ Ze—1] = uz + v = w(z) is O(e).
For each particular value x we know how to compute the value w(z) with-
out knowing z using Lemma 1 and Formula (1). More explicitly, Let ¢; =
(z+b;)*mod N, i = 0,1,2,...e — 1, be the given cryptograms, whose under-
e—1

lying messages are linearly related, and let n/_,(zx) = H(bk — b;). We use pg
2

as a shorthand for 7/,_;(zx). Then

e—1

=§ -'vkl _N
B el( .

k=0 k=0 Pk

Here we assume that the inverses (b — b;)"! mod N exist. Note that if for
some k, % this isn’t true then we can factor the RSA-modulus N, by computing
ged(N, (b — by)).

From Lemma 1 (ii) we know that u = e. Note also that w(0) = v =

= é %Pk ! mod N, and we can compute it in the pre-computation phase (be-
fore intercepting the cryptograms). So we can find z = (w(z) — v)e”! mod N.

The following algorithm summarizes the above discussion:

Algorithm 1

Given cryptograms ¢; = (z+b;)*mod N, i =0,1,2,...e—1, with known constants
b;, find z.
Method:

1. Pre computation:
e—1
For k =0,..e—1, compute p; ' = H(bk —b;)~L; (If for some k, i, (by —b;) ™!

1=0
1#k
does not exist then factor NV using ged(bx — b;, N) and halt);

v=Y 5 : o b8 - prt mod N;
2. Real- tlme computatlon. z=el. ((ZZ;(I) ckpy ') — v) mod N.
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The complexity of the pre-computation is O(e log?(e)) (see Appendix), and
the complexity of the real time computations is O(e).

3 Special Case

3.1 Finite Differences

We now consider the special case where the e cryptograms are of the form ¢; =
(axz +b-4)°mod N, i = 0,1,...e — 1, for any known constants a,b € Zy, where
ged(a, N) = ged(b, N) = ged(e!, N) = 1. The special linear relations among
these cryptograms allows us to deterministically compute z in overall O(e) Zy -
operations. As before z denotes an indeterminate variable.

Definition 2. For h a polynomial over any ring let A (z) = h(z), and let
A (z) = A Dz 4+1) - ACD(g),i=1,2,...

It is easy to see that the degree of the polynomials resulting from this simpler
process keep decreasing as in the case of divided-differences. More precisely:

Lemma 2. In the special case where z; = z+1, and ged(n!, N)=1, [zo, Z1, ...-Zn]
= A (z)/n!

A similar relation can be derived when z; = ax + ib, for known constants
a,b. The next two lemmas are stated for general polynomials h(z), although

eventually we use them for h(z) = z® mod N. Let m = deg(h), and 0 < k < m.
By induction on k:

Lemma 3. A®(z) = % (¥) - h(z +1) - (=1)**mod N.
For the algorithm we will need explicit formulas for the two leading terms

of A (z). Let h(z) = Y-, a;z* and let T{® .. (z) denote the two leading
terms of A% (z).

Lemma 4. T? (z) = %m)L, m—k-1(q,,m(z+k(m—k)/2)+am_1(m—k)).

my&m—1

Proof. We induct on k. The basis step is trivial. We verify one more step that
is needed later.

O (3) = 2™ 2(amm(z + mT_l) + Ga_gtlm— 1) (5)

Om,8m—1

AN (z) = h(z + 1) — h(z), whose two leading terms are indeed equal to
T,Sn),am ,(z) above. Now assume that the two leading terms of A®~1(z) are

7D (z) = az™ k! + Bz *, where a = (im—_,lc;—,amm and

8= g:: i),[ammk(m k)/2+ am-1(m — k)].

The proof can be completed by showing that T(l) 5(z) = T (x). This can

Am,&m—1

be done by computing the first difference of T(k 1) (), substituting a for a,,

Am ,Gm—1
and (3 for a,,—1 in equation (5) to get the claim.



