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Preface

A leitmotif in the evolution of programming paradigms has been the level and
extent of parametrisation that is facilitated — the so-called genericity of the
paradigm. The sorts of parameters that can be envisaged in a programming
language range from simple values, like integers and floating-point numbers,
through structured values, types and classes, to kinds (the type of types and/or
classes). Datatype-generic programming is about parametrising programs by the
structure of the data that they manipulate.

To appreciate the importance of datatype genericity, one need look no further
than the internet. The internet is a massive repository of structured data, but
the structure is rarely exploited. For example, compression of data can be much
more effective if its structure is known, but most compression algorithms regard
the input data as simply a string of bits, and take no account of its internal
organisation.

Datatype-generic programming is about exploiting the structure of data when
it is relevant and ignoring it when it is not. Programming languages most com-
monly used at the present time do not provide effective mechanisms for docu-
menting and implementing datatype genericity. This volume is a contribution
towards improving the state of the art.

The emergence of datatype genericity can be traced back to the late 1980s.
A particularly influential contribution was made by the Dutch STOP (Specifi-
cation and Transformation of Programs) project, led by Lambert Meertens and
Doaitse Swierstra. The idea that was “in the air” at the time was the common-
ality in ways of reasoning about different datatypes. Reynolds’ parametricity
theorem, popularised by Wadler [17] as “theorems for free,” and so-called “de-
forestation” techniques came together in the datatype-generic notions of “cata-
morphism,” “anamorphism” and “hylomorphism,” and the theorem that every
hylomorphism can be expressed as the composition of a catamorphism after an
anamorphism. The “theory of lists” [5] became a “theory of F's,” where F is an
arbitrary datatype, and the “zip” operation on a pair of equal-length lists be-
came a generic transformation from an F structure of same-shape G structures
to a G structure of same-shape F structures [1,11].

In response to these largely theoretical results, efforts got underway in the
mid-to-late 1990s to properly reflect the developments in programming language
design. The extension of functional programming to “polytypic” programming
[14,12] was begun, and, in 1998, the “generic programming” workshop was or-
ganized by Roland Backhouse and Tim Sheard at Marstrand in Sweden [4],
shortly after a Dagstuhl Seminar on the same topic [13]. The advances that had
been made played a prominent part in the Advanced Functional Programming
summer school [16, 3,15, 6], which was held in 1998.
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Since the year 2000, the emphasis has shifted yet more towards making
datatype-generic programming more practical. Research projects with this goal
have been the Generic Haskell project led by Johan Jeuring at Utrecht Univer-
sity (see, for example, [10,9]), the DFG-funded Generic Programming project led
by Ralf Hinze at the Universtiy of Bonn, and the EPSRC-supported Datatype-
Generic Programming project at the universities of Nottingham and Oxford,
which sponsored the Spring School reported in this volume. (Note that although
the summer school held in Oxford in August 2002 [2] was entitled “Generic Pro-
gramming,” the need to distinguish “datatype” generic programming from other
notions of “generic” programming had become evident; the paper “Patterns in
Datatype-Generic Programming” [8] is the first published occurrence of the term
“datatype-generic programming.”)

This volume comprises revisions of the lectures presented at the Spring School
on Datatype-Generic Programming held at the University of Nottingham in April
2006. All the lectures have been subjected to thorough internal review by the
editors and contributors, supported by independent external reviews.

Gibbons (“Datatype-Generic Programming”) opens the volume with a com-
prehensive review of different sorts of parametrisation mechanisms in program-
mming languages, including how they are implemented, leading up to the notion
of datatype genericity. In common with the majority of the contributors, Gib-
bons chooses the functional programming language Haskell to make the notions
concrete. This is because functional programming languages provide the best
test-bed for experimental ideas, free from the administrative noise and clutter
inherent in large-scale programming in mainstream languages. In this way, Gib-
bons relates the so-called design patterns introduced by Gamma, Helm, Johnson
and Vlissides [7] to datatype-generic programming constructs (the different types
of morphism mentioned earlier). The advantage is that the patterns are made
concrete, rather than being expressed in prose by example as in a recent Publi-
cation [7].

Hinze, Jeuring and Loh (“Comparing Approaches to Generic Programming
in Haskell”) compare a variety of ways that datatype-generic programming tech-
niques have been incorporated into functional programming languages, in partic-
ular (but not exclusively) Haskell. They base their comparison on a collection of
standard examples: encoding and decoding values of a given datatype, compar-
ing values for equality, and mapping a function over, “showing,” and performing
incremental updates on the values stored in a datatype. The comparison is based
on a number of criteria, including elements like integration into a programming
language and tool support.

The goal of Hinze and Loh’s paper (“Generic Programming Now”) is to show
how datatype-generic programming can be enabled in present-day Haskell. They
identify three key ingredients essential to the task: a type reflection mechanism,
a type representation and a generic view on data. Their contribution is to show
how these ingredients can be furnished using generalised algebraic datatypes.

The theme of type reflection and type representation is central to Altenkirch,
McBride and Morris’s contribution (“Generic Programming with Dependent
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Types”) . Their paper is about defining different universes of types in the Epi-
gram system, an experimental programming system based on dependent types.
They argue that the level of genericity is dictated by the universe that is cho-
sen. Simpler universes allow greater levels of genericity, whilst more complex
universes cause the genericity to be more restricted.

Dependent types, and the Curry-Howard isomorphism between proofs and
programs, also play a central role in the Qmega language introduced by Sheard
(“Generic Programming in Qmega”). Sheard argues for a type system that is
more general than Haskell’s, allowing a richer set of programming patterns,
whilst still maintaining a sound balance between computations that are per-
formed at run-time and computations performed at compile-time.

Finally, Lammel and Meijer (“Revealing the X/O Impedance Mismatch”) ex-
plore the actual problem of datatype-generic programming in the context of
present-day implementations of object-oriented languages and XML data mod-
els. The X/O impedance mismatch refers to the incompatibilities between XML
and object-oriented models of data. They provide a very comprehensive and up-
to-date account of the issues faced by programmers, and how these issues can
be resolved.

It remains for us to express our thanks to those who have contributed to
the success of the School. First and foremost, we thank Fermin Reig, who was
responsible for much of the preparations for the School and its day-to-day orga-
nization. Thanks also to Avril Rathbone and Pablo Nogueira for their organi-
zational support, and to the EPSRC (under grant numbers GR/S27085/01 and
GR/D502632/1) and the School of Computer Science and IT of the University
of Nottingham for financial support. Finally, we would like to thank the (anony-
mous) external referees for their efforts towards ensuring the quality of these
lecture notes.

June 2007
Roland Backhouse
Jeremy Gibbons
Ralf Hinze
Johan Jeuring
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Datatype-Generic Programming

Jeremy Gibbons

Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD, United Kingdom
http://www.comlab.ox.ac.uk/jeremy.gibbons/

Abstract. Generic programming aims to increase the flexibility of pro-
gramming languages, by expanding the possibilities for parametriza-
tion — ideally, without also expanding the possibilities for uncaught
errors. The term means different things to different people: parametric
polymorphism, data abstraction, meta-programming, and so on. We use
it to mean polytypism, that is, parametrization by the shape of data
structures rather than their contents. To avoid confusion with other
uses, we have coined the qualified term datatype-generic programming
for this purpose. In these lecture notes, we expand on the definition of
datatype-generic programming, and present some examples of datatype-
generic programs. We also explore the connection with design patterns in
object-oriented programming; in particular, we argue that certain design
patterns are just higher-order datatype-generic programs.

1 Introduction

Generic programming is about making programming languages more flexible
without compromising safety. Both sides of this equation are important, and
becoming more so as we seek to do more and more with computer systems,
while becoming ever more dependent on their reliability.

The term ‘generic programming’ means different things to different people,
because they have different ideas about how to achieve the common goal of com-
bining flexibility and safety. To some people, it means parametric polymorphism;
to others, it means libraries of algorithms and data structures; to another group,
it means reflection and meta-programming; to us, it means polytypism, that is,
type-safe parametrization by a datatype. Rather than trying to impose our mean-
ing on the other users of the term, or risk confusion by ignoring the other uses,
we have chosen to coin the more specific term datatype-generic programming.
We look in more detail at what we mean by ‘datatype-generic programming’,
and how it relates to what others mean by ‘generic programming’, in Section 2.

Among the various approaches to datatype-generic programming, one is what
we have called elsewhere origami programming [38], and what others have vari-
ously called constructive algorithmics [12,123], Squiggol [93], bananas and lenses
[101], the Bird-Meertens Formalism [122,52], and the algebra of programming
[9], among other names. This is a style of functional (or relational) programming

R. Backhouse et al. (Eds.): Datatype-Generic Programming 2006, LNCS 4719, pp. 1-71, 2007.
@© Springer-Verlag Berlin Heidelberg 2007
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based on maps, folds, unfolds and other such higher-order structured recursion
operators. Malcolm [92], building on earlier theoretical work by Hagino [56],
showed how the existing ad-hoc datatype-specific recursion operators (maps and
folds on lists, on binary trees, and so on) could be unified datatype-generically.
We explain this school of programming in Section 3.

The origami approach to datatype-generic programming offers a number of
benefits, not least of which is the support it provides for reasoning about recur-
sive programs. But one of the reasons for our interest in the approach is that it
seems to offer a good way of capturing precisely the essence of a number of the so-
called Gang of Four design patterns, or reusable abstractions in object-oriented
software [35]. This is appealing, because without some kind of datatype-generic
constructs, these patterns can only be expressed extra-linguistically, ‘as prose,
pictures, and prototypes’, rather than captured in a library, analysed and reused.
We argue this case in Section 4, by presenting higher-order datatype-generic pro-
grams capturing ORIGAMI, a small suite of patterns for recursive data structures.

A declarative style of origami programming seems to capture well the compu-
tational structure of at least some of these patterns. But because they are usually
applied in an imperative setting, they generally involve impure aspects too; a
declarative approach does not capture those aspects well. The standard approach
the functional programming community now takes to incorporating impure fea-
tures in a pure setting is by way of monads [105,135], which elegantly model
all sorts of impure effects such as state, I/O, exceptions and non-determinism.
More recently, McBride and Paterson have introduced the notion of idiom or
applicative functor [95], a slight generalization of monads with better compo-
sitional properties. One consequence of their definitions is a datatype-generic
means of traversing collections ‘idiomatically’, incorporating both pure accumu-
lations and impure effects. In Section 5, we explore the extent to which this
construction offers a more faithful higher-order datatype-generic model of the
ITERATOR design pattern specifically.

These lecture notes synthesize ideas and results from earlier publications,
rather than presenting much that is new. In particular, Section 3 is a summary
of two earlier sets of lectures [37,38]; Section 4 recaps the content of a tutorial
presented at ECOOP [39] and OOPSLA [40], and subsequently published in a
short paper [41]; Section 5 reports on some more recent joint work with Bruno
Oliveira [44]. Much of this work took place within the EPSRC-funded Datatype-
Generic Programming project at Oxford and Nottingham, of which this Spring
School marks the final milestone.

2 Generic Programming

Generic programming usually manifests itself as a kind of parametrization. By
abstracting from the differences in what would otherwise be separate but similar
specific programs, one can make a single unified generic program. Instantiating
the parameter in various ways retrieves the various specific programs one started
with. Ideally, the abstraction increases expressivity, when some instantiations of
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the parameter yield new programs in addition to the original ones; otherwise, all
one has gained is some elimination of duplication and a warm fuzzy feeling. The
different interpretations of the term ‘generic programming’ arise from different
notions of what constitutes a ‘parameter’.

Moreover, a parametrization is usually only called ‘generic’ programming if it
is of a ‘non-traditional’ kind; by definition, traditional kinds of parametrization
give rise only to traditional programming, not generic programming. (This is
analogous to the so-called AT effect: Rodney Brooks, director of MIT’s Artificial
Intelligence Laboratory, quoted in [79], observes that ‘Every time we figure out a
piece of [Al], it stops being magical; we say, “Oh, that’s just a computation” ’.)
Therefore, ‘genericity’ is in the eye of the beholder, with beholders from dif-
ferent programming traditions having different interpretations of the term. No
doubt by-value and by-reference parameter-passing mechanisms for arguments
to procedures, as found in Pascal [74], look like ‘generic programming’ to an
assembly-language programmer with no such tools at their disposal.

In this section, we review a number of interpretations of ‘genericity’ in terms of
the kind of parametrization they support. Parametrization by value is the kind of
parameter-passing mechanism familiar from most programming languages, and
while (as argued above) this would not normally be considered ‘generic program-
ming’, we include it for completeness; parametrization by type is what is nor-
mally known as polymorphism; parametrization by function is sometimes called
‘higher-order programming’, and is really just parametrization by value where
the values are functions; parametrization by structure involves passing ‘modules’
with a varying private implementation of a fixed public signature or interface;
parametrization by property is a refinement of parametrization by structure,
whereby operations of the signature are required to satisfy some laws; parame-
trization by stage allows programs to be partitioned, with meta-programs that
generate object programs; and parametrization by shape is to parametrization
by type as ‘by function’ is to ‘by value’.

2.1 Genericity by Value

One of the first and most fundamental techniques that any programmer learns
is how to parametrize computations by values. Those old enough to have been
brought up on structured programming are likely to have been given exercises
to write programs to draw simple ASCII art: Whatever the scenario, students
soon realise the futility of hard-wiring fixed behaviour into programs:

procedure Triangle4;

begin
WriteString ("*"); WriteLn;
WriteString ("**"); WriteLn;
WriteString ("*x*"); WriteLn;
WriteString ("****"); WriteLn

end;

and the benefits of abstracting that behaviour into parameters:
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procedure Triangle (Side : cardinal);
begin
var Row, Col : cardinal;
for Row := 1 to Side do begin
for Col :=1to Row do WriteChar (’*’);
WriteLn
end
end

Instead of a parameterless program that always performs the same computation,
one ends up with a program with formal parameters, performing different but
related computations depending on the actual parameters passed: a function.

2.2 Genericity by Type

Suppose that one wants a datatype of lists of integers, and a function to append
two such lists. These are written in Haskell [112] as follows:

data List] = Nill | ConslI Integer List]

appendl :: List] — List] — Listl
appendl Nill ys = ys
appendl (Consl z zs) ys = Consl z (appendl zs ys)

Suppose in addition that one wanted a datatype and an append function for lists
of characters:

data ListC = NilC | ConsC Char ListC

appendC :: ListC — ListC — ListC
appendC NilC ys = ys
appendC (ConsC z xs) ys = ConsC z (appendC xs ys)

It is tedious to repeat similar definitions in this way, and it doesn’t take much vi-
sion to realise that the repetition is unnecessary: the definitions of the datatypes
List] and ListC are essentially identical, as are the definitions of the functions
appendl and appendC. Apart from the necessity in Haskell to choose distinct
names, the only difference in the two datatype definitions is the type of list
elements, Integer or Char. Abstracting from this hard-wired constant leads to
a single polymorphic datatype parametrized by another type, the type of list
elements:

data List a = Nil | Cons a (List a)

(The term ‘parametric datatype’ would probably be more precise, but ‘polymor-
phic datatype’ is well established.) Unifying the two list datatypes in this way
unifies the two programs too, into a single polymorphic program:

append :: List a — List a — List a
append Nil ys = ys
append (Cons z zs) ys = Cons z (append zs ys)



