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Preface

In recent years there has been a lot of interest in extending the standard
classical integral transforms to classes of generalised functions or
distributions. The theory of the Fourier transform has been documented in
standard works such as [24] and [75] but it was not until the appearance of
[87] that transforms on the half-line (0,~) such as the Laplace, Mellin and
Hankel transforms received much attention. In the ten years since [87}
was published, interest has continued. However, most authors have used
classes of generalised functions which are ideal for the particular
transform under consideration but for no others. The purpose of this book
is to describe a class of spaces of generalised functions which are
amenable to the study of a number of important operators and to use the
theory to solve in some detail a number of standard problems. In
particular, we show how various classical results are incorporated in our
distributional theory.

Since an indefinite integral is probably the simplest integral transform
of all, no apology is needed for using this as the starting point for a
theory of fractional calculus, another topic which has sprung to life in
recent years with the publication of [56] and [74]. This distributional
fractional calculus is used as a unifying theme in the later chapters of the
book. We have concentrated on problems which are of general interest
and where the theory is complete. Thus we consider hypergeometric
integral equations, Hankel transforms and dual integral equations of

Titchmarsh type in detail. In the last chapter we mention how an



incomplete theory can be developed in the case of most of the other
standard transforms on (0,~) and also indicate a number of directions in
which the theory may develop in the future.

On a personal note, my interest in this field began during the period
1968-71 when it was my great pleasure and privilege to be a research
student at the University of Edinburgh under the supervision of the late
Professor Arthur Erdélyi. During that period and right up to his untimely
death, his willing help and friendly advice were a great inspiration.
Without him, this book would never have existed. I hope that it might
serve as my modest tribute to a very great mathematician and friend.

It is perhaps appropriate that the impetus for me to put pen to paper
came from another of Professor Erdélyi's former students, David Colton, and
I am pleased to record my appreciation of Professor Colton's advice and
encouragement. My thanks also go to my colleague Dr. Gary Roach for his
interest and for looking through the manuscript. Last but by no means
least, I would like to record my sincere thanks to Mrs. Mary Sergeant and
Miss Elaine Livsey for preparing the typescript so excellently and coping

with my whims and fancies.
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0O Notation

Here we introduce a few standard notations and conventions which will be

used throughout the book.

1.

Zis

All functions will be complex-valued.

An expression such as x , where x is a positive real number and ) 1s

complex, will be interpreted as exp(} log x) with log x real.

All integrals will be Lebesgue integrals.

Let I denote either the open interval (0,«) or the whole real line RY.

We consider (complex-valued) measurable functions defined almost

everywhere (a.e.) on I.

(1)

(ii)

(iii)

f is locally integrable on I if it is (Lebesgue) integrable over
every compact sub-interval of I.

Any equation involving locally integrable functions is to be
interpreted as holding a.e. on the appropriate set. Alternat-
ively, we may work with equivalence classes of functions, two
functions being in the same equivalence class if they are equal
a.e.

For 1 < p < =, Lp(l) is the set of (equivalence classes of)

measurable functions f such that

el = 1] £ |Paxt/P < o, ©.1)
P

Lm(I) is the set of (equivalence classes of) measurable functions

f such that



(iv)

v)

Again,
valued

(1)

[|f||,x = ess sup f < =, (0.2)
I

For 1 < p € =, LP(I) is a Banach space with respect to the norm

Let 1 « p € @ and let u be a complex number. Then Li is the
space of (equivalence classes of) functions f such that

x "f(x) = LP(0,%), i.e.,
L= i x ) ¢ LP(o,9) 0. (0.3)

(We shall not require this definition on (-«,=).) Occasionally

we will write

1P = 17 = 1P(0,=). (0.4)

Lﬁ is a Banach space with respect to the norm || || . defined by

= ||x "E(x 0.5

el L = T eeo || ©.5)
where || ||p is given by (0.1) or (0.2).

If 1 < p < «@, the number q will always be related to p via the

relation
1 1 p
-+ =—=1 or qQ = — (0.6)
P q p-1
with the convention that if p = 1, q = « while if p = =, q = 1.
let I denote either (0,*) or R'. Here we consider complex-—

functions defined everywhere on I.
C (I) denotes the set of all (complex-valued) functions on I
which are infinitely differentiable on I, i.e. which have

derivatives of all orders at all points of I.



(ii) C;(I) is the subset of C (I) consisting of those functions ¢
which have compact support, i.e. which are such that ¢(x) = O
outside some compact subset of I (the compact subset varying
with ¢).

The set CS(I) will sometimes be denoted by D(I) and, in the
case I = (0,«), simply by D.
If X is a topological vector space, we denote by X' the dual space of
X, 1.e. the set of all continuous linear functionals on X. The value

assigned to ¢ ¢ X by f ¢ X' will be denoted by (f,4).



1 Introduction

§1.1 Motivation and Background

Let X, Y be two (non-empty) sets and T a mapping of X into Y. If g = Y

does not lie in the range of T, then the equation
Tf = g (1.1)

has no solution f * X. Nevertheless, it is sometimes possible to recover
something from the wreck.
Suppose, for instance, that it is possible to imbed the sets X and Y in

oy Y] . . . v v
sets X and Y respectively with £ - £, g » g etc. Suppose also that T can

be extended to a mapping T of X onto Y in such a way that, for all f ¢ X,

oy ~

Tf = Tf. (1.2)
Then, if g is as in (l.1), the equation

Th = g (1.3)

will have at least one solution h + X. Such an h might be called a

generalised (or weak) solution of (l.1) since, if (1.1) has a solution

f e X, h= % will satisfy (1.3) in view of (1.2). Although the word
"imbed'" was used above, there may not be any topologies involved initially.
However if X, Y, i, Y are topological spaces and the imbeddings are
continuous, it would be ideal if T turned out to be a homeomorphism of X
onto Y. Then we would have a unique generalised solution of (1.1).

We shall be concerned with the case when X and Y are topological vector



spaces of functions (justifying the choice of f, g above) and T is an

integral operator from X into Y but not onto. Indeed X and Y will be
spaces of the form Lp as defined in (0.3). We give two instances for the
case ;1 = 0 involving operators which will attract much of our attention in

the sequel.

Example 1.1

Let n and ¢ be complex numbers with Re » > O and define Il’t by
S= X
(5 Pe X a=1 n
(ll f)(l\) = W (X_C) t f(t)dt (O < X - ).
I (u lo

I;’i is one of the Erdélyi-Kober operators of fractional integration
introduced in [32] and [34]. Indeed in [32, Theorem 2], Kober showed that

I;’% is a continuous linear mapping of LP= Lp(O,')) into itself provided
that Re 1 » - 1/q. However l?’u does not map LP onto LP. For instance,
if

f=8 (f,2 - LP0,"))

(equality holding almost everywhere on (0,+)), then %' 1g(x) must be

differentiable almost everywhere on (0,+).

Example 1.2
For suitable complex numbers v, 1 - p < 2 and f Lp, we may define va,
the Hankel transform of f of order ., by
(H £)(x) = i'i'n?'(q)i.n";tJ‘u(xt)f(t)dL (0« x < =)
-0
where 1.i.m.(q) denotes the limit in the Lq(O,‘) norm. Then by standard

results in {l] and [78], H 1is a continuous linear mapping of L? into 19
.

when Re v =~ = 3/2 + 1/p. However, except in the very special case of



p =2, Hv does not map LP? onto LY and a useful characterisation of the
range Hv(Lp) does not seem to be known.

An even more extreme situation arises with the Laplace transform .

Example 1.3
For f ¢ LP (1 « p ¢ =), define Lf by
T —xt
(Lf) (x) = J e f(t)dt (0 < x < ™),
0
Then from [85, pp_312—31, if 1 < p < «, g=1LEf (f € Lp) if and only if g

is infinitely differentiable and, for some constant M,

@ k p _
: = J Id——f{ KPP 2ax M (k= 0,1,2, ...).
(k)Y 70 dx

Thus L maps LP into L but clearly not onto. The cases p = 1 and p = «=

P
2/p-1
produce analogous results.
Similar comments can be made about other standard integral transforms on
the half-line (0,«) but we have enough to be getting on with.
Returning to the general case,we have to consider how to imbed our space
X of functions in a suitable larger set. One method is to take X = A
the dual space of some space Z of infinitely differentiable testing-
functions. If Z is chosen appropriately, we might hope that each element
f of X would generate a functional Yez according to the prescription
(f,4) = | £(x)¢(x)dx (1.4)
‘’E
where, for our present discussion, E will be either (0,=) or (-=,=).
Examples of such spaces Z' are the spaces L' (-=,«) and D'(0,~) of Schwartz

distributions and the space &' of tempered distributions discussed in, for

instance, [24], [75], [79] and [861. We cannot hope for a single space Z'



which will be ideal for every operator T we care to consider. Hence, in
the literature, many different spaces are introduced which are tailor-made
for the problem in hand. However, in the case of functions defined on
(0,+), it is usual to demand that J)(0,+) be dense in Z so that the
restrictions of the elements of Z' to D(0,») form a subspace of the Schwartz
space ' (0,+) by f87, Corollary 1.8 - Za]. Similar comments apply to

(=, =), Thus Z' is a space of generalised functions in the sense of
Zemanian [87, p.39}.

The extension of integral transformations from classical functions to
generalised functions has attracted a lot of attention in recent years and
mention must be made of the work of Zemanian which appears in his book [87].
Since [87] was published, further developments have taken place and we shall
mention briefly a few of these below, although no attempt has been made to
make the list comprehensive. We do this in the course of outlining three
methods which have been successfully used to carry out the extension
process.

The first method might be called "the adjoint operator method".

Suppose we are dealing with two spaces X and Y of functions on (0,*) which

are imbedded in spaces Z!,Z!

2 of generalised functions respectively and let

T map X into Y. Then if f & X, (1.2) decrees that, for any testing-—

function § ¢ 22,
(TF,0) = | TEGOe(0dx = | £()T*(x)dx = (£,T*)) (13}
0 0]

where T#*: 22 - Zl is the formal adjoint of T ([87], §1.10). (1.5)

suggests that we define T: Zi - Zé by

(Th,¢) = (h,T*;)  (h e Z]s & ¢ Z)). (1.6)



n
The properties of T then follow from those of T* by standard theorems ([87},

pP. 29). Thus in this approach, we try to choose spaces Z1 and 22 such
that T*: Z2 - Z1 is a homeomorphism. Then, by [87, Theorem 1.10 - ZJ,

T Zi - Zi is also a homeomorphism. This approach is used in [87] for a
study of the Hankel transform. An earlier example of the same method (on

(=2,®)) is the now standard theory of the Fourier transform on the space &'
of tempered distributions; see, for instance,[Z&], [75] and [79].

A second, more specialised method might be called'"the convolution method".
Again, we shall work on (0,«) only. The method treats an integral

transform T of the form
(Tf) (x) = Jmk(x—t)f(t)dt (0 < x <) (1.7)
0
so that Tf is the convolution of the kernel k and the unknown function f.
Convolution is an operation which is meaningful for distributions in
L' (-»,«) whose support is bounded on the left ([24, Ch. 1, §5], [86, Ch. 5])

and in particular for elements of ' (0,«). Hence if k generates a

distribution 1\{ € &'(O,w), we are led to define T on D' (0,«) by

n

n
Th = k * h (1.8)

where * denotes distributional convolution. An example of this approach
is afforded by the extension of the Riemann-Liouville fractional integral

1% defined for Re ¢ > O by

1
X
o 1 e i |
Ilf(x) ) J (x-t) f(t)dt
0
so that I% is one of the constituents of the operator in Example 1.1. In

this case, the kernel generates the distribution xz—l/r(u) described in [24,

p. 47] so that the extended operator, i say, 1s given by

1



e a-1, ) G .
I].h = X+ /1(&1) * h (h L@ (O, )).

Using basic properties of convolution, a modest theory of fractional
integration can be developed ([24], pp. 115 - 122).

The third method might be called the "kernel method". This is somewhat
different in that it maps a generalised function into a classical function
rather than another generalised function. Again, to fix ideas, consider

the operator T defined by

(Tf) (%) = k(x,t)f(t)dt (0 < x < =) (1.9)

‘0
where k is a known kernel and f ¢ X. To imbed f in 2', we choose Z in
such a way that, as a function of t, k(x,t) ¢ Z for each fixed x ¢ (0,»).

- . . . Vv
Then, under appropriate conditions, f ¢ X will generate a functional f ¢ Z'

and the right-hand side of (1.9) can be regarded as (%,kx) where
kx(t) = k(x,t) (0 < t < @), (1.10)

This suggests that if h + Z', we take Th to be the classical function

defined by
Thix) = (h,k) (0 < x < =), (1.11)

This method is extensively used by Zemanian in [871 where we find applicat-
ions to the Laplace, Mellin, K, I and Weierstrass transforms (the K and I
transforms being analogues of the Hankel transform with J  replaced by the
modified Bessel functions Kv and Iv)' Perhaps paradoxically, a general
convolution transform is also treated by this method in [87, Chapter 8].

In recent years, the adjoint operator method or kernel method has been

applied to all the standard integral transforms on (0,=) as well as many



more off-beat generalisations. There have been studies using the adjoint

operator method of

fractional calculus by Erdélyi and McBride [17], [46][47],[50], [74],

Hankel transforms by Dube and Pandey [6], Koh [35], [36] and Lee [38],

[39]

Mellin, Hankel and Watson transforms and fractional integrals by

Braaksma and Schuitman [2].

On the other hand, there have been studies using the kernel method of
Stieltjes transforms by Erdélyi [15], Pandey [65] and Pathak [66],
Hardy transforms by Pathak and Pandey [67].

However, as hinted above, there is a snag. In many cases the spaces of
generalised functions introduced in the references quoted are expressly
geared to one particular transform and seem to be of little or no use for
any other transform. This is hardly surprising since the kernels of the
various transforms behave so differently. Nevertheless, in all but the
simplest problems, it will be necessary to apply a succession of operators
in order to obtain a solution and we therefore need spaces of generalised
functions relative to which all the relevant operators are well-behaved.

The object of this book is to introduce and study certain spaces of
generalised functions which, we believe, are of interest as regards the LP
theory of a number of important operators on the positive half-line (0,=).
We have chosen to study a few operators in considerable detail rather than
to deal sketchily with a lot of transforms. To provide some continuity,
we have chosen fractional calculus as a unifying theme and we deal with a
number of problems which are connected to this theme. Except in the last
chapter, we use the "adjoint operator' method as described above.

Perhaps the nearest relative of our approach in the literature is that

10



