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PREFACE

TH1s book has been written in an attempt to provide an introduc-
tion to statistical mechanics suitable for students who, while of
limited mathematical experience, require, nevertheless, to appreci-
ate something of the content and importance of modern statistical
theories, especially in the field of physical chemistry. It is based
on lectures given during the past two or three years, while I was
a member of the Department of Physical and Inorganic Chemistry
in the University of Leeds, to third-year Honours chemistry
students and young research workers. I could have wished no
better audience, and should like here to acknowledge my indebted-
ness to the lively discussions which often followed these lectures
‘and contributed very greatly to my own understanding of the
subject.

The emphasis of the book is on the fundamental principles and
techniques of statistical mechanics, rather than on their applica-
tion to specific physical or chemical problems. Inevitably, how-
ever, some application of these principles to definite experimental
phenomena must be made: both in order to confirm the validity
of the basic statistical postulates and to illustrate the kind of
understanding which statistical interpretations afford. I hope that
my choice of these iﬂustrgﬁiohs will not seem too arbitrary. For
the most part the examples chosen are of quite fundamental
importance (as, for instance, the statistical interpretation of the
specific heats of gages): others have been included either on
account of their mathematical suitability or because of current
interest within the department in which I was lecturing. For this
latter reason I have dealt in some detail with the theory of non-
ionic solutions. But I must emphasize that these lectures were not
intended in any way to cover the ground in theoretical chemistry.
Nor is this book. Its aim is simply to take a student with no
previous knowledge of statistical mechanics, and little mathe-
matical equipment, sufficiently far for him afterwards to be able
to read original papers and standard treatises (see bibliography)
with some understanding and not too much effort.
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Until the last chapter, when something is said, briefly, of their
interconnexion, statistical mechanics and thermodynamics are
regarded as largely independent disciplines both bearing on our
field of inquiry: some acquaintance, therefore, with the basic

" concepts of thermodynamics is presupposed. Nevertheless, I think
that all the thermodynamic formulae which have been used have
been derived from first principles either in the text orin appendixes
at the end of the book. Mathematically, no knowledge is presup-
posed apart from that which is indispensable to any scientist:
acquaintance with logarithmic and exponential functions, elemen-
tarv algebra, and the fundamentals of differential and integral
calculus. Although there are problems of statistical mechanics
which require for their satisfactory solution very powerful in-
struments of pure mathematics, it is quite surprising how much
progress is possible with the help only of simple and elementary
tools. : s 4

Any book which makes no special claim to originality necessarily
‘owes much to current standard treatises, and while T have fried to
avoid conscious plagiarism my indebtedness to the works listed
in the bibliography will be apparent to all who are familiar with
them. I only hope that the result of this present text will be that
many others are enabled to enjoy those weightier publications,
indispensable to serious research workers. It has seemed inappro-
priate, in an exposition which is primarily theoretical, to make
detailed reference to the origin of experimental values listed in the
half-dozen tables of physical measurements. Most of these tables,
which give the experimental values that I quoted in my lectures,
were derived from miscellaneous sources: in so far as many of
these can be traced in the reference books already mentioned, I
hope that this expression of my indebtedness to them may be
taken as sufficient acknowledgement. Table II is rather excep-
tional in that its columns were taken as they stand from the
corresponding table on p. 90 of Fowler and Guggenheim’s Statis-
tical Thermodynamics. 1 am very grateful to Professor Guggen-
heim, F.R.S., and the Syndics of the Cambridge University Press,
for their kind permission to use this table.

It gives me much pleasure to express my gratitude to the many
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friends who have helped me in this work. Particularly must I
" thank Professor C. A. Coulson, who was not only responsible for
my starting to write the book but has read the whole manuscript
and corrected many of its errors, and Professor M.-G. Evans,
F.R.S., with whom I have had countless invaluable discussions:
for their kind encouragement I am especially grateful. I must also
thank by name Dr. N. B. Slater and Mr. J. S. de Wet for their help
in correcting the proofs and checking the examples. '

Finally, I am much indebted to the officers of the Clarendon
Press for their unfailing patience and helpfulness, which have made
my share in the business of publication so agreeable and pleasur-

able a task.
G.S. R.
OXFORD

January 1949
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I
INTRODUCTION

1. STATISTICAL mechanics is concerned with interpreting and, as
far as possible, predicting the properties of macrcscopic physical
or chemical systems in terms of the properties of the microscopic
systems (atoms, molecules, ions, electrons, etc.) of which these
aggregates are composed. It is, moreover, primarily concerned
- with the equilibrium properties of macroscopic systems and not
with the velocity with which this equilibrium is reached. The
vheory of rate-processes is called kinetic theory and, although of
great importance, is still very much in process of development and
hardly yet on as sound or final a basis as is the theory of the
properties of thermodynamic systems which have attained com-
plete equilibrium. This book will deal only with the latter field,
in which the rules are already well established.

The field is, of course, b)'r no means An nnimportant one. For
we shall be concerned with the theory underlying the interpreta-
tion, in terms of molecular structure and intermolecular forces,
of such diverse physical or chemical properties as the specific heat
of a gas, the partial vapour pressures of a solution or the melting-
point of a solid. We shall not, however, attempt to deal with all
existing applications of statistical mechanics. Some of these, e.g.
to the melting-point of a solid, are necessarily either superficial
or mathematically very involved: and most are already easily
available either in standard treatises (such as Fowler and Guggen-
heim; see Bibliography) or in original papers.. The present book
aims rather at preparing the ground so that. such more detailed
and elaborate works may be read with profit. The basic concepts
and principles of statistical mechanics are introduced, it is hoped,
both simply and systematically, and the examples chosen to
illustrate the application of the principles, and to further a clear
understanding of them, are generally of quite fundamental im-
portance. Some examples of rather minor interest, however, have
been included when these have served to extend the mathematical

technique. For statistical mechanics is essentially a mathematical
4973 B ’
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science, and besides introducing the basic concepts and principles
of the theory an elementary book must also develop some of
the necessary mathematical tools. Heré, however, we have
deliberately kept to the very simplest methods.

The theory is called statistical mechanics because it evidently
has to do with average behaviour, in much the same way as an
actuary is concerned with average behaviour when dealing with
population statistics: The pressure of a gas, for example, on the
walls of its container, is clearly some kind of average rate of
destruction of the momenta of the gas molecules on collision with
the walls. For, by definition, pressure is force per unit area and,
by Newton’s laws of motion, force is rate of change of momentum.
Strictly, the pressure will be subject to fluctuations, but these will
usually be too small to measure. The existence of local fluctua-
tions in the pressure, or density, of a gas is revealed by the blue
colour of the sky (Rayleigh); the Brownian movement of colloidal
suspensions and the shot effect in electronics are other well known
instances of fluctuation effects. The theory of fluctuation pheno-
mena is a branch of statistical mechanics, but one with which we
cannot start off: it constitutes a rather specialized field, which is
largely outside the scope of this book.

2. Before the development of statistical mechanics, there were
two major theoretical sciences which dealt with the behaviour of
bulk matter: classical mechanics and thermodynamics. These,
associated respectively with the names of such men as Newton,
Euler, and Hamilton on the one hand and Carnot, Joule, and
Planck on the other, formed well-established sciences, valid in
their own proper domains, but with little or nothing by way of
a link betweén them. _

By classical mechanics we mean mechanics based on Newton’s
laws of motion, in distinction to the more recent quantum or
‘wave mechanics which, we now know, replaces the older theory
when very small bodies, of atomic size, are considered. Although
one of our main concerns in subsequent chapters will be to empha-
size the differences in macroscopic properties resulting from quantal
rather than classical behaviour (of the atomic systems of which
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bulk matter is composed), in the present paragraph it will be
sufficient to confine attention to the more familiar classical con-
cepts. These concepts of classical mechanics are simply time; dis-
placement, mass, velocity, energy, force, etc., and the equations
of olassical mechanics describe the motion, in time and space, of
bodies, genera.lly ma,orosooplc bddles acted upon by given forc?s
The equations can be solved acoura.tely only when very few bodies,
such as those of a planetary system; are involved.
Thermodynamics, by: dontrast, deald with the general la.w.s
governing heat effects: the total conservation of energy, whether
mechanical or thermal, the existence of entropy, the pha,se rule,
and so on: a field having at first sight no intimate connexion with
classical mechanics. It i8 concerned only with very general pro-
perties of bulk matter: a typieal thermcdynamic formuls; for
instance, being that conneoting the difference between specific
heats at.constant pressure and constant volume, respectively, with
compressibility and the coefficient of thermal expansion, i.e.

<[P\ [oV\2
o ~i(5) 50

A certain familiarity, on the part of the reader, with the basic
concepts of thermodynamics and some knowledge of the more
important formulae, are assumed throughout this book. For easy
reference, however, most of the formulae required, together with &
concise derivation of them from statements of the first and second
laws of thermodynamics, are collected together in Appendix I.
Now just because the fundamental laws of *hermodynamics are
so general, applying equally to a litre of hydrogen and a block
of ice, thermodynamics, as such, is completely unoconcerned with
specific molecular behaviour. Why, at the same temperature and
external pressure, HyO molecules can form a solid while H, mole-
cules form a gas, is a question thermodynamics alone cannot
answer.t Yet the limitations of classical mechanics are equally
profound. It is easy to suppose that if we could solve the 3.10%
formulae of Newtonian mechanics for a thermodynamic system

t It is, however, not quite true to' say that thermodyhamies is altogether
unconcerned with moleculsr models: cf. the last chapter. .
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of 102 atoms we should possess a complete description of the
properties of the bulk matter. Quite apart from the possibility
of so doing, this is not true. Our answer would still be in terms
of space-time concepts (mass, position, velocity of each atom, etec.)
-~and not in terms of thermodynamical concepts.such as heat con-
tent, entropy, or specific heat. There is a gap here which has to
be bridged by some entirely new ideas. It is the theory of
Statistical Mechanics, due to Boltzmann, Gibbs, Fowler, and
others, which provides the bridge.

3. Before stating the fundamental problem of statistical me-
chanics explicitly, we must give rather more precision to our
terminology. So far, as the reader will have observed, we have
employed the word system to denote two very different entities.

In the first place it has been used, e.g. in the phrase thermo-
dynamic system, to describe any collection of macroscopic bodies
(solids, liquids, or gases) among which thermal, physical, or
chemical changes can occur. Secondly, it has been used, e.g. in
the phrase microscopic system, to describe one of the basic particles
(atom, molecule, ion, or electron) the statistical behaviour of a ver:
large number of which gives rise to the measurable properties ...
a macroscopic body. Such dual usage is liable to produce confu-
sion, and we shall, therefore, use the word assembly to denote what
we have so far called a thermodynamic, or macroscopic, system;
and we shall reserve the word system, by itself, for what we have
hitherto called an atomic, or microscopic, system. This termino-
logy is not universal, in the literature of statistical mechanics,
though it is used in the writings of Fowler and Guggenheim and
has a great deal to commend it. More precisely, then:

(i) We shall refer to a thermodynamic system, no matter how
many, or few, phases and constituents it comprises, as an
assembly.

(ii) We shall reserve the word system as a generic term for any
of the atoms, molecules, ions, ete., of which the assembly
is composed.

There are two other related words which we shall use in a
restricted technical sense, and it is convenient to give their defini-
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tions here. They are the words species and components. The
systems of an assembly can be of differing species. Thus we may
take for our assembly a piece of brass: the systems then com-
prise two species, copper atoms and zinc atoms (or, if we wish
to be more precise, there are three species, copper ions, zinc ions,
and electrons). Alternatively, we might consider a quantity of
gaseous HCL In this assembly HCl systems preponderate, but
there are also necessarily some H, and Cl, molecules in dissociative
equilibrium with them. When these traces of H, and Cl, can be
ignored, as, for instance, in the theory of the specific heat of
gaseous HCl, we shall say that there is only one species present,
namely HCl molecules. But if we are particularly interested in
the value of the equlhbrlum constant between HCl, H,, and Cl,
then we must recognize that our assembly contains (at least) three
types of system, and we shall refer to each distinct type of system
as a distinct species. In the present instance we should recognize
(probably) three species in the assembly: H, molecules, Cl, mole-
cules, and HCl molecules. Quite generally,

(iii) The number of species present is the number of different
types of system which we recognize as existing as distinct
entities in the assembly. Each distinct type constitutes a
species.

In the above example, however, the numbers of systems of the
three species, H,, Cl,, and HCl, are not independent. If we add
more systems of the type H,, then the number of HCl systems
will also change, on account of the chemical reaction. We shall
refer to the independent chemical constituents of an assembly as
its components. Thus, in the above example, there are two com-
ponents: though whether we regard H, and Cl, or Cl, and HCl or
HCl and H, (molecules) as specifying these components does not
matter. Actually we should, in this case, probably not choose any
of the three species as components, but take the two components
of thewassembly to be H atoms and Cl atoms, from which all three
species are built up. In general,

{iv) the number of components of an assembly is the number
of independent types of system from which we may regard



