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Preface

This book is intended as a text for a one- or two-semester introduction
to topology, at the senior or first-year graduate level.

The subject of topology is of interest in its own right, and it also serves
to lay the foundations for future study in analysis, in geometry, and in
algebraic topology. There is no universal agreement among mathematicians
as to what a first course in topology should include; there are many topics
that are appropriate to such a course, and not all are equally relevant to
these differing purposes. In the choice of material to be treated, I have tried
to strike a balance among the various points of view.

Prerequisites. There are no formal subject matter prerequisites for study-
ing most of this book. T do not even assume the reader knows much set
theory. Having said that, T must hasten to add that unless the reader has
studied a bit of analysis or “rigorous calculus,” he will be missing much of
the motivation for the concepts introduced in the first part of the book.
Things will go more smoothly if he already has had some experience with
continuous functions, open and closed sets, metric spaces, and the like
although none of these is actually assumed. In Chapter 8, we do assur:
familiarity with the elements of group theory. :

Most students in a topology course have, in my'experience, some Knowl-

.edge of the foundations of mathematics. But the amount varies a great deal

xi
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from one student to another. Therefore I begin with a fairly thorough chapter
on set theory and logic. It starts at an elementary level, and works up to a
level that might be described as “semi-sophisticated.” It treats those topics
(and only those) which will be needed later in the bock. Most students will
already be familiar with the material of the first few sections, but many of
them will find their expertise disappearing somewhere about the middle of
the chapter. How much time and effort the instructor will need to spend on
this chapter will thus depend largely on the mathematical sophistication and
experience of his students. Ability to do the exercises fairly readily (and
correctly!) should serve as a reasonable criterion for determining whether
the student’s mastery of set theory is sufficient for him to begin the study
of topology.

How the book is organized. When this book is used for a one-semester
course, some choices will have to be made concerning what material to
cover. I have attempted to organize the book as flexibly as possible, so as
to enable the instructor to follow his own preferences in this matter.

Part T of the book, consisting of the first four chapters, deals with that
body of material which in my opinion should be included in any introductory
topology course worthy of the name, This may be censidered the “irreducible
core” of the subject, treating as it does topological spaces, connectedness,
compactness (through compactness of finite products), and the counta-
bility and separation axioms (through the Urysohn metrization theorem).
Certain sections are marked with an asterisk; these do not form part of the
basic core and may be omitted or postponed with no loss of continuity.

Part 11 of the book consists of four chapters which are entirely indepen-
dent of one another. They depend only on the material of Part I; the instruc-
tor may take them up in any order he chooses. Furthermore, if he wishes
to cover only a portion of one of these later chapters, he can consult the
introduction to that chapter, where there appears a diagram showing the
relations of dependence among the sections of the chapter. The instructor
who wishes, for instance, to conclude his course with a proof of the Jordan
curve theorem can determine from this diagram which of the earlier sections
of Chapter 8 are essential, and which peripheral, to his purpose.

Some of the material of the later chapters depends on one or more of the
asterisked sections in Part I. Each such dependence is indicated in a footnote
at the beginning of the asterisked section, and again in the introduction to
the chapter in question. Some of the exercises also depend on earlier aster-
isked sections, but in such cases the dependence is obvious.

Possible course outlines. Most instructors who use this text for a one-
semester course will wish to cover the “core” material of Part I, along with
the Tychonoff theorem (§5-1). Many will cover additional topics as well.
One might, for instance, treat some of the asterisked sections of Part I. (I
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usually do local compactness, at least.) Or he may choose one or more
topics from Part 11. Possibilities include: the Stone-Cech compactification
(§5-3), metrization theorems (Chapter 6), the Peano curve (§7-2), one or
both versions of Ascoli’s theorem (§7-3 and §7-6), dimension theory (§7-9),
the fundamental group and applications (§8-1-§8-10), or the Jordan curve
theorem (§8-13). I have in different semesters followed each of these options.

For the instructor who wishes to emphasize algebraic topology, one
possible course outline would consist of Chapters | to 3 followed by Chapter
8 in its entirety. Omitting Chapter 4 will cause no difficulty, provided une
skips Exercise 5 of §8-12, which involves the concept of normality.

Still another possible outline is the one suggested by the Committee on
the Undergraduate Program in Mathematics (of the Mathematical Associa-
tion of America) for a one-semester course in topology at the first-year
graduate level. It would consist of Chapters 2, 3, and 4, followed by §5-1;
§6-1, §6-3, §6-4; §7-1; §8-1 through §8-5, §8-8 through §8-11, and §8-14.
This program assumes that the student has already had an introduction to
set theory equivalent to our Chapter 1.

In a two-semester course, one can reasonably expect to cover the entire
book.
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book; I mention only Edwin Moise, Raymond Wilder, Gail Young, and
Raoul Bott, but there are many others. For their helpful comments con-
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to my colleagues George Whitehead and Kenneth Hoffman. My apprecia-
tion goes to Miss Viola Wiley, who deciphered my handwriting and con-
verted it into neat copy, and to the employees of Bertrick Associate Artists,
Inc., who drew the illustrations.

But most of all, to my students go my most heartfelt thanks. From them
I learned at least as much as they did from me; without them this book
would be very different.
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A Note to the Reader

Two matters require comment—the exercises and the examples.

Working problems is a crucial part of learning mathematics. No one can
learn topology merely by poring over the definitions, theorems, and examples
that are worked out for him in the text. He must work part of it out for
himself. To provide that opportunity is the purpose of the exercises.

They vary in difficulty, with the easier ones usually given first. Some are
routine verifications designed to test whether you have understood the
definitions or examples of the preceding section. Others are less routine.
You may, for instance, be asked to generalize a theorem of the text. While
the result obtained may be interesting in its own right, the main purpose of
such an exercise is to encourage you to work carefully through the proof
in question, mastering its ideas thoroughly, more thoroughly (I hope!) than
mere memorization would demand.

Some exercises are phrased in an “open-ended” fashion. Students often
find this practice frustrating. When faced with an exercise which asks, “Is
every regular Lindeldf space normal ?” they respond in exasperation, “I don’t.
know what I'm supposed to do! Am I supposed to prove it or find a counter-
example or what?” But mathematics (outside textbooks) is usually like this.
More often than not, all a mathematician has to work with is a conjecture
or question, and he doesn’t know what the correct answer is. You should
have some experience with this situation.

Xv



xvi A Note to the Reader

A few exercises that are more difficult than the rest are marked with
asterisks. But none are so difficult but that the best student in my class can
usually solve them.

Another important part of mastering any mathematical subject is acquir-
ing a repertoire of useful examples. One should of course come to know
those major examples from whose study the theory itself derives, and to
which the important applications are made. But he should also have a few
counterexamples at hand with which to test plausible conjectures.

Now it is all too easy in studying topology to spend too much time
dealing with “weird counterexamples.” Constructing them requires ingenuity,
and is often great fun. But they are not really what topology is about.
Fortunately, one does not need too many such counterexamples for a first
course; there is a fairly short list which will suffice for most purposes. Let
me give it here:

K, the product of the real line with itself, in the product,
uniform, and box topologies.

R, the real line in the topology having the intervals [a, b) as
a basis.
Sas the minimal uncountable well-ordered set.

1 > I, the closed unit square, in the dictionary order topology.

These are the examples you should master and remember; they will be
exploited again and again.
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Part One

1. Set Theory and Logic

We adopt, as most mathematicians do, the naive point of view regarding
set theory. We shall assume that what is meant by a set of objects is intuitively
clear, and we shall proceed on that basis without analyzing the concept
further. Such an analysis properly belongs to the foundations of mathematics
and to mathematical logic, and it is not our purpose to ini*iate the study of
those fields.

Logicians have analyzed set theory in great detail, and they have formula-
ted axioms for the subject. Each of their axioms expresses a property of sets
that mathematicians commonly accept, and collectively t'.= axioms provide a
foundation broad enough and strong enough that the rest of mathematics
can be built on them.

It is unfortunately true that careless use of set theory, relying on intuition
alone, can lead to contradictions. Indeed, one of the reasons for the axio-
matization of set theory was to formulate rules for dealing with sets that would
avoid these contradictions. Although we shall not deal with the axioms explic-
itly, the rules we follow in dealing with sets derive from them. In this book,
you will learn how to deal with sets in an “apprentice” fashion, by observing
how we handle them and by working with them yourself. At some point of
your studies you may wish to study set theory more carefully and in greater
detail; then a course in logic or foundations will be in order.



4 Set Theory and Logic Chap. 1

1-1 Fundamental Concepts

Here we introduce the ideas of set theory, and establish the basic termi-
nology and notation. We also discuss some points of elementary logic that,
in our experience, are apt to cause confusion.

Basic Notation

Commonly we shall use capital letters 4, B, . . . to denote sets, and lower-
case letters a, 6, . . . to denote the objects or elements belonging to these sets.
If an object @ belongs to a set 4, we express this fact by the notation

ac A.
If a does not belong to 4, we express this fact by writing
a¢ A

The equality symbol = is used throughout this book to mean logical
identity. Thus when we write @ = b, we mean that “a” and “b” are symbols
for the same object. This is what one means in arithmetic, for example. when
one writes # = 1. Similarly, the equation 4 — E states that “4™ and “B" are
symbols for the same set; that is, 4 and B consist of precisely the same ob-
jects.

If @ and b are different objects, we write @ = b; and if 4 and B are different
sets, we write 4  B. For example, if A is the set of all nonnegative real
numbers, aind B is the set of all positive real numbers, then 4 5= B, because
the number 0 belongs to A and not to B.

We say that A is a subset of B if every element of A is also an element of
B;and we cxpress this fact by writing

A < B.

Nothing in this definition requires A4 to be different from B; in fact, if 4 = B,
it is true that both 4 = Band B < 4. If A « B and A is different from B,
we say that 4 is a proper subset of B and we write

A S B.

How does one go about specifying a set ? If the set has only a few elements,
one can simply list the objects in the set, writing “A is the set consisting of
the elements a, b, and ¢.” In symbols, this statement becomes

A =1{a, b, c},

where braces are used to enclose the list of elements.
The usual way to specify a set, however, is to take some set 4 of objects



§1-1 Fundamental Concepts

and some property that elements of 4 may or may not possess, and to form
the set consisting of all elements of 4 having that property. For instance, one
might take the set of real numbers and form the subset B consisting of all
even integers. In symbols, this statement becomes

B ={x

x is an even integer}.

Here the braces stand for the words “the set of,” and the vertical bar stands
for the words “such that.” The equation is read, “B is the set of all x such that
x is an even integer.”

The Urion of Sets and The Meaning of “or”

Given two sets A and B, one can form a set from them that consists of all
the elements of A4 together with all the elements of B. This set is called the
union of 4 and 2 and is denoted by 4 U B. Foimally, we define

AUB={x|xe Aorxe B}

But we must pause at this point and make sure exactly what we mean by the
statement “x € 4 or x € B.”

In ordinary everyday English, the word “or” is ambiguous. Sometimes the
statement “P or Q” means “P or Q, or both” and sometimes it means “P or
0, but not both.” Usually one decides from the context which meaning is
intended. For example, suppose I spoke to two students as follows:

“Miss Simith, every student registered for this course has taken either a course
in linear algebra or a course in analysis.”

“Mr. Jones, either you get a grade of at least 70 on the final exam or you will
flunk this course.” '

In the context, Miss Smith knows perfectly well that I mean “everyone has
had linear algebra or analysis, or both,” and Mr. Jones knows I mean “cither
he gets at leasi 70 or he flunks, but not both.” Indeed, Mr. Jones would be
exceedingly unhappy if both statements turned out to be true!

In mathematics, one cannot tolerate such ambiguity. One has to pick just
one meaning and stick with it, or confusion will reign. Accordingly, mathe-
maticians have agreed that they will use the word “or” in the first sense, so
that the statement “P or Q” always means “P or Q, or both.” If one means
“P or Q, but not both,” then one has to include the phrase “but not both”
explicitly.

With this understanding, the equation defining 4 (U B is unambiguous; it
states that 4 U B is the set consisting of all elements x that belong to 4 or to
B or to both.



Set Theory and Logic Chap. 1

The Intersection of Sets, The Empty Set, and The Meaning
of “If ... Then”

Given sets 4 and B, another wady one can form a set is to take the com-
mon part of 4 and B. This set is called the intersection of 4 and B and is
denoted by 4 N B. Formally, we define

AN B={x|xe 4and x € B}.

But just as with the definition of 4 U B, there is a difficulty. The difficulty is
not in the meaning of the word “and”; it is of a different sort. It arises when
the sets 4 and B happen to have no elements in common. What meaning does
the symbol A M B have in such a case?

To take care of this eventuality, we make a special convention. We intro-
duce a special set which we call the empty set, denoted by &, which we think
of as “the set having no elements.”

Using this convention, we express the statement that 4 and B have no
elements in common by the equation

ANB=g.

We also express this fact by saying that 4 and B are disjoint.

Now some students are bothered by the notion of an “empty set.” “How,”
they say, “can you have a set with nothing in it?”” The problem is similar to
that which arose many years ago when the number O was first introduced.

The empty set is only a convention, and mathematics could very well get
along without it. But it is a very convenient convention, for it saves us a good
deal of awkwardness in stating theorems and in proving them. Without this
convention, for instance, one would have to prove that the two sets 4 and B
do have elements in common before one could use the notation 4 N B.
Similarly, the notation

C = {x|x € A and x has a certain property}

could not be used if it happened that no element x of 4 had the given prop-
erty. It is much more convenient to agree that A N B and C equal the empty
set in such cases.

Since the empty set & is merely a convention, we must make conventions
relating it to the concepts alréady introduced. Because & is thought of as
“the set with no elements,” it is clear we should make the convention that for
each object x, the relation x € @ does not hold. Similarly, the definitions of
union and intersection show that for every set 4 we should have the equations

AUO@ =4 and AN QO =0.

The inclusion relation is a bit more tricky. Given a set 4, should we agree
that @ < A4? Once more we must be careful about the way mathematicians
use the English language. The expression & < A is a shorthand way of writ-
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ing the sentence, “Every element that belongs to the empty set also belongs
to tne set 4.” Or to put it more formally, “For every object x, if x belongs to
the empty set, then x also belongs to the set 4.”

Is this statement true or not? Some might say “yes” and others say “no.”
You will never settle the question by argument, only by agreement. This is a
statement of the form “If P, then Q,” and in everyday English the meaning
of the “if . . . then” construction is ambiguous. It always means that if P is
true, then @ is true also. Sometimes that is al/ it means; other times it means.
something more: that if P is false, Q must be false. Usually one decides from
the context which interpretation is correct.

The situation is similar to the ambiguity in the use of the word “or.” One
can reformulate the examples involving Miss Smith and Mr. ones to illus-
trate the ambiguity. Suppose I said the following:

“Miss Smith, if any student registered for this course has not taken a course
in linear algebra, then he has taken a course in analysis.”

“Mr. Jones, if vou get a grade below 70 on the final, vou are geing te flunk
this course.”

In the context, Miss Smith understands that if a student in the course has
not had linear algebra, then he has taken analysis, but if he has had linear
algebra, he may or may not have taken analysis as weli. And Mr. Jones knows
that if he gets z grade below 70, he will flunk the course, but if he gets a grade
of at least 70, he will pass.

Again, mathematics cannot tolerate ambiguity, so a choice of meanings
must be made. Mathematicians have agreed always to use “if . . . then” in the
first sense, so that a statement of the form “If P, then 0" means that if P is
true, Q is true also, but if P is false, 0 may be either true or false.

As an example, consider the fellowing statement about real numbers:

If x > 0, then x* £ 0.

It is a statement of the form, “If P, then Q,” where P is the phrase “x > 0~

(called the hypethesis of the statement) and Q is the phrase “x? £ 07 (called

the conclusion of the statement). This is a true statement, for in every case for

which the hypothesis x > 0 holds, the conclusion x* 5= 0 holds as well.
Another true statement about real numbers is the following:

If x2 < 0, then x = 23;

in every case for which the hypothesis holds, the conclusion holds as well. Of
course, it happens in this example that there are no cases for which the hypoth-
esis holds. A statement of this sort is sometimes said to be vacuously true,

To return now to the empty set and inclusion, we see that the inclusion
@ < A does hold for every set 4. Writing @ < A is the same as saying, “If
x € ¢, then x € A,” and this statement is vacuously true.
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Contrapositive and Converse

Our discussion of the “if ... then” construction leads us to consider
another point of elementary logic that sometimes causes difficulty. It concerns
the relation between a statement, its contrapositive, and its converse.

Given a statement of the form “If P, then Q,” its contrapositive is defined
-to be the statement “If Q is not true, then P is not true.” For example, the
contrapositive of the statement

If x > 0, then x* %0,
is the statement

If x3 =0, then it is not true that x > 0.

Note that both the statement and its contrapositive are true. Similarly, the

statement
If x* < 0, then x = 23,

has as its contrapositive the statement
If x 5= 23, then it is not true that x* < 0.

Again, both are true statements about real numbers.
These examples may make you suspect that there is some relation between
a statement and its contrapositive. And indeed there is; they are two ways of
saying precisely the same thing. Each is true if and only if the other is true; -
they are logically equivalent.
: This fact is not hard to demonstrate. Let us introduce some notation first.
As a shorthand for the statement “If P, then Q,” we write

P=0,

which is read “P implies Q.” The contrapositive can then be expressed in the
form
(not Q) = (not P),

where “not Q7 stands for the phrase “( is not true.”

Now the only way in which the statement “P = Q" can fail to be correct
is if the hypothesis P is true and the conclusion Q is false. Otherwise it is
correct. Similarly, the only way in which the statement (not Q) = (not P)
can fail to be correct is if the hypothesis “nat Q7 is true and the conclusion
“not £7 is false. This is the same as saying that Q 1s false and P is true. And
this, in turn, is precisely the situation in which P == O fails to be correct.
Thus we see that the two statements are either both correct or both incorrect ;
they are logically equivalent. Therefore, we shall accept a proof of the state-
ment “not @ = not P~ as a proof of the statement “P => Q.”

There is another statement that can be formed from the statement P = Q.
it is the statement .

QO===F,



