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Foreword

The equilibrium concept of Nash is without doubt the singic game-theoretic
tool that is most often applied in economics: in recent years. especially.
its use has increased dramatically. Together with this increased use has
come a growing preoccupation with the philosophical and logical under-
pinnings of the concept. The current monumental work of John Harsanyi
and Reinhard Selten. in the making for close to two decades, is a major
contribution to this effort.

An equilibrium in a game is defined as an assignment to cach player of
astrategy that is optimal for him when the others use the strategies assigned
to them. One of the oldest rationales for this concept, advanced already by
von Neumann and Morgenstern (1944), is that any normative theory that
advises players how to play games must pick an equilibrium in each game.
A theory recommending anything other than an equilibrium would be
self-defeating, in the sense that a player who believes that the others are
following the theory will sometimes be motivated to deviate from it. Note
that this holds only if the theory recommends a unique strategy for each
player.

In general. a given game may have several equilibria. Yet uniqueness is
crucial to the foregoing argument. Nash equilibrium makes sense only if
each player knows which strategies the others are playing; if the equilibrium
recommended by the theory is not unique, the players will not have this
knowledge. Thus it is essential that for each game. the theory selects one
unique equilibrium from the set of all Nash equilibria.

Of course the “theory” rationale makes sense only il all the players are
advised by the same theory, and by no other theory, and they must be
convinced that all will abide by the advice. This could happen if that theory
alone were taught at the business (or law) schools that the players attended.
An analogy is to industrial standardization, and to conventions such as
driving on the right: indeed. such standards and conventions are illustra-
tions of equilibrium selection.

In this book a coherent theory of equilibrium selection is constructed.
The difficulties in constructing such a theory are formidable, as anybody
reading this book will quickly realize. The major implication, like that
of the first heavier-than-air flying machine, is that it can be done. The
theory rationale for Nash equilibrium thus acquires a visible, demonstrated
foundation.

The authors will probably be the first to acknowledge thut their selection
theory is not the only possible or reasonable one. Although the theory
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selects a unique equilibrium. us a theory 1t need not be unigue. Every facet
of the theory was carefully thought out: but as in any complex construc-
tion project. many decisions were made which. though far from arbitrary,
could well have been made in some other way. During the fifteen or twenty
vears during which the theory was in the making, several of its aspects.
both major and minor. were reconsidered and revised. No doubt. future
streamlining and other improvements will be welcomed by the authors. and
indeed. there is every chance that they themselves will participate in the
process.

As a spin-off from demonstrating the feasibility of equilibrium selection,
this book develops several new ideas that are important in their own right.
quite independently of the selection problem. Prominent among these are
the notions of risk dominance and the tracing procedure.

A consequence of the availability of a theory of equilibrium selection is
the ability to implement what has been called the Nash program. A game
is called cooperative if there is available a mechanism, such as a court. to
enforce agreements. In a cooperative game any feasible outcome may be
achieved if the players subscribe to the appropriate agreement. In the 1951
paper in which he defined equilibrium, Nash noted that by specifying
and explicitly modeling the bargaining process by which agreements may
be reached. one can view cooperative games as special instances of non-
cooperative games. Nash suggested that the originally given cooperative
game be analyzed by means of one of the noncooperative games associated
with it in this way.

One difficulty with this program is that even when the bargaining process
is fully specified and completely modeled. the resulting noncooperative
game often has many equilibria that are very different from each other: in
this case the Nash program is not very informative. By selecting a particular
one of the many equilibria appearing in such models, the Harsanyi-Selten
theory removes this difficulty.

The authors have not contented themselves with a purely theoretical
construction. They realize that the proof of the pudding is in the eating
of it, that a game-theoretic concept cannot be judged solely on the basis
of abstract considerations of plausibility but where it leads in applica-
tions. Chapters 6 through 9 of the book are devoted to applications, with
emphasis on bargaining and multilateral trade.

In summary, the publication of this book constitutes a major event in
game theory; it is likely to have an important influence on the discipline

Foreword X111

itsell as well as on its applications to economic and pehacal theory, The
authors are to be congratulated for bringing a long and arduous task to 4

successiul conclusion.

Robert Aumann
Jerusalem. lsrael
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1 The Need for a New Solution Concept

1.1 Our Solution Concept

The purpose of this book is to propose a new solution concept. prima-
rily defined for noncooperative games but applicable also to cooperative
games, because every cooperative game can be remodeled as a bargaining
game having the structure of a noncooperative game. For any noncoopera-
tive game. including noncooperative bargaining games, our theory always
selects one equilibrium point as the solution. By reducing cooperative
games to noncooperative bargaining games, our approach unifies the theo-
ries of cooperative and noncooperative games into one general theory,

1.2 Cooperative and Noncooperative Games

In contrast. in classical game theory. cooperative and noncooperative
games are treated quite differently, and the distinction between these two
game classes plays a very fundamental role. Nash (1950a, 1951), who first
introduced this distinction, defined cooperative games as games that permit
both free communication and enforceable agreements among the players,
in contrast to noncooperative games. which permit aeither communication
nor enforceable agreements.

A binary distinction based on two simultaneous criteria is logically
unsatisfactory, however. We cannot define one category as a class of all
objects possessing both properties 4 and B and the other category as a
class of all objects possessing neither property. If we do so, then one must
ask what about objects having property A but not B, and objects having
property B but not 4?

It is preferable therefore to use a one-criterion distinction—to define
cooperative games simply as those permitting enforceable agreements and
noncooperative games as those not permitting them. Certainly, how much
communication is allowed among the players is important in many cases,
but this turns out to be a less fundamental issue. To illustrate the prob-
lem, consider the Prisoner’s Dilemma game shown in figure 1.1. (For an
explanation of the term “Prisoner’s Dilemma.” see Luce and Raiffa 1957,
pp. 94-95.) In each cell of the payoff table the number in the upper left-hand
corner is player 1's payoff, and that in the lower right-hand corner is player
2’s. The rows of the table represent player 1's strategies C* and N* and the
columns represent player 2’s strategies C** and N**.

Because this game is compietely symmetric between the two players, both
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players have positions of equal strength. Therefore it is natural to expect
that they will agree on an outcome that yields them equal payoffs—by
either choosing the strategy pair C = (C*, C**), which would yield the
payoffs (10, 10), or the strategy pair N = (N*, N**), which would yield the
payofls (1,1). If the game is played as a cooperative game (permitting
enforceable agreements), then the players, assuming that they act ration-
ally, will no doubt immediately agree to use the strategy pair C. since C
will give them much higher pavoffs than N would. Thus C = (C*, C**) may
be called the cooperative solution of the game.

In contrast, if the game is played as a noncooperative game (i.c., if the
players are unable to conclude enforceable agreements). then they cannot
do any better than use the strategy pair N = (N*, N**), which may be called
the noncooperative solution.

To establish this point, we will first show that if enforceable agreements
are impracticable, then rational players cannot choose the strategy pair
C = (C*,C**). Even if they did agree to use their C-strategies. they could
not rationally expect each other to keep to this agreement, so any such
agreement would be quite pointless. Suppose they were to make such an
agreement and expect each other to keep it. Then player | would imme-
diately have an incentive to violate this agreement by using strategy N*,
rather than C*, because N*, and not C*, would be his best reply! to player
2’s expected strategy C**. Likewise player 2 would have an incentive
to violate the agreement by using strategy N**| rather than C**, because
N** and not C**, would be his best reply to player I's expected strategy
Cc*

In a noncooperative game the strategy pair C cannot be chosen by
rational players because it would be self-destabilizing: the fact that one
player expects the other to abide by a C-strategy would give him a clear
incentive to deviate from C. Our analysis also shows the mathematical
reason why C has this undesirable property. The reason is that the two

The Need for a New Solution Concept 3

players” C-strategies ure not best replies to each other. Rather. the best reply
to C**is V* and the best reply to C* is N**,

[n contrast. the strategy pair N = (N*,N**) can be readily used by
rational plavers in a noncooperative game because it is self-stabilizing: si ce
N*and N** are mutually the best replies to each other, if the two players
for any reason expect each other to use an N-strategy. then both of them
will have a clear incentive to make this expectation come true by using
N-strategies.

Clearly, in playing this game. the decisive question is whether the players
cun make enforceable agreements, and it makes little difference whether
they are allowed to talk to each other. Even if they are free to talk and to
negotiate an agreement, this fact will be of no real help if the agreement
has little chance of being kept. An ability to negotiate agreements is useful
only if the rules of the game make such agreements binding and enforceable.
{In real hfe. agreements may be enforced externally by courts of law.
government agencies, or pressure from public opinion: they may be en-
forced internally by the fact that the players are simply unwilling to violate
agreements on moral grounds and know that this is the case.)

As Nash has already pointed out (1950a, 1951), similar considerations
apply to all noncooperative games. Since in such games agreements are not
enforceable, rational players will always choose a strategy combination
that is self-stabilizing in the sense that the players will have some incentive
to abide by a strategy combination (or at least will have no incentive not
to do so) if they expect all other players to abide by it. Mathematically
this means that they will always choose a strategy combination with the
property that every player’s strategy is a best reply to all other players’
strategies. A strategy combination with this property is called an equilib-
rium (point). Nash has also shown that every finite game? has at least one
equilibrium point (in pure strategies or sometimes only in mixed strategies).

Nevertheless, the definitions of cooperative and noncooperative games
are still in need of further clarification. As they stand, they may give the
false impression that noncooperative games cannot be used for modeling
game situations in which the players are able to make enforceable agree-
ments (or to enter into other firm commitments,® e.g., irrevocable promises
and threats). As we shall see in section 1.3, it is possible to incorporate self-
commitment moves explicitly into the extensive form of a noncooperative
game.

We propose therefore to rephrase our definitions as follows. A non-
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copperative game is a game modeled by making the assumption that the
players arc unahle to make enforceable agreements (or other commitments).
except insofar as the extensive form of the game explicitly gives them an
ability 10 do so. In contrast. a cooperative game is a game modeled by
making the assumption that the players are able to make enforceable
agreements (and possibly other commitments) even if their ability to do so
is not shown explicitly by the extensive form of the game.

1.3 Irrevocable Commitments within a Noncooperative Game

There are several ways of incorporating self-commitment moves into the
extensive form of a game. For instance, we can define the payoffs in such
a way that any violation of a commitment made by a player would carry
heavy penalties, or we can add extra players to the game whose task is to
punish violators. But the simplest method of doing it is this: At a suitable
point of the game tree, we give the relevant player a choice between two
moves. say, x and S, where z is interpreted as 2 commitment to do or not
to do something at some later stage(s) of the game and f§ is interpreted as
making no commitment. The commitment expressed by move x may be
unconditional. or it may become operative only conditionally. subject to
the occurrence of some future events. If the player chooses move f, then
from that point the game will be governed by the remaining part of the
original game tree, which we will call subtree T. But if he chooses move 2.
then from that point the game will be governed by a modified version of
subtree T to be called T'. T' will differ from T by having all branches
removed that would correspond to moves violating the commitment that
the player in question made when he chose move x (i.e. moves violating
the commitment will simply not be available to this player).

It can of course happen that this removal of all commitment-violating
moves will leave some of the players’ information sets with one unique
branch (one unique move), indicating that he no longer has a real choice
at any of these information sets. Such information sets (and these unique
branches) can always be omitted, since information sets permitting no real
choice are irrelevant. This method can be easily generalized to cases where
a player can choose not only between making and not making a specific
commitment but rather among a number of alternative commitments.

For example, the extensive form of the game discussed in section 1.2 can
be represented by the game tree in figure 1.2. The numbers 1 and 2 printed
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at the right of the two information-set symbols (the two ovals) indicate
which player has a move at that particular information set.

Now we can represent the players” ability to make an enforceable ugree-
ment about using their C-strategies as follows: At the beginning of the
game. we give player 1 a choice between moves x* and *. where x* means
"I commit myself to using strategy C*, provided that player 2 will commit
himself to using strategy C**.” while move f* means "I make no commit-
ment.” In case player | has actually chosen move «*, we now give player
2 a choice between moves x** and f**, where x** means “Yes. [ do commit
myself to using strategy C** as player 1 has suggested.” and move f**
means 1 make no commitment.”

Now, we can distinguish three cases:

L If player 1 chooses «* while player 2 chooses x**, then both players will
be committed to using their C-strategies. Consequently the remaining part
of the game will now be reduced to the subtree T,, shown in figure 1.3. But.
since each of the two information sets in 7, has only one branch arising
from it, we can omit both of these information sets as well as the two
branches (C* and C**), which amounts to replacing the entire subtree T,
by the payoff vector |15 generated by it.

2. 1f player I chooses x* while player 2 chooses f**, then the two players
will be under no commitment to restrict their freedom of action. Con-
sequently the remaining part of the game will be governed by a subtree T,
which is simply a copy of the original game tree. )
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Figure 1.3

3. If player | chooses f*. then once more the players will retain their
freedom of action. and the remaining part of the game will be governed by
a subtree T,. which is again simply a copy of the original game tree.

Accordingly, the game tree of the enlarged game will be as shown in figure
14

In the normal form of the enlarged game, we can characterize each
player's strategies by three symbols. For example. the first symbol (x* or
B* for plaver 1, and »** or ** for plaver 2) may be used to indicate the
player's choice between commitment and no commitment, the second
symbol (C* or N* for 1, and C** or N** for 2) may indicate the strategy
that he would follow in subtree T, and the third symbol (C* or N*, or.
alternatively, C** or N**) may indicate the strategy that he would follow
in subtree Ty. Thus one possible strategy of player 1 would be x*C*N*.
Obviously either player will have 23 = 8 different pure strategies.

It is easy to verify that the enlarged game has only one perfect equilibrium
point in pure strategies. E, = (x* N¥*N* o** N*¥* N**) [n other words, if
both players are able to commit themselves to C-strategies, it will be clearly
in their interest to do so to obtain the payoffs (10, 10). At the same time the
definition of E, contains two N* and two N** symbols. These indicate that
each player would use his N-strategy if his opponent refused to commit
himself to use his C-strategy. (This part of either player’s strategy plan will
of course not be implemented since the opponent will make the required
commitment.)

Intuitively one can identify E, with the cooperative solution (C*, C*¥)
of the original game. Thus we can say that by incorporating the commit-
ment moves a* and «** (as well as no-commitment moves f* and f**)into

~J
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Figure 1.4

the extensive form of the game, we have essentially turned the cooperative
solution (C*, C**) into an equilibrium point—so as to make it an outcome
achievable by rational players even if the game (or, rather. the enlarged
version of the game) is played as a formally noncooperative game. Indeed.
since E| is the only perfect equilibrium point of the enlarged game, we have
turned £ into the only outcome consistent with rational behavior by both
players. {For a more detailed analysis of the enlarged game. see section 1.14.
As we will try to show in sections 1.9 and 1.10, only perfect equilibrium
points are compatible with rational behavior by all of the players in a
noncooperative game.)

1.4 Limitations of the Classical Theory of Cooperative Games

The classical theory of noncooperative games is essentially a theory of one
basic solution concept, that of equilibrium points. In contrast, the classical
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theory ol copperative games offers a rich variety of alternative solution
concepts, namely the von Neumann-Morgenstern stable sets (1944}, the
Nash solution for two-person bargaining games (1950b. 1953). the Shapley
value (1953), the core (Gillies 1959). the Aumann-Maschler bargaining sets
(1964), among others.

Individually each of these solution concepts is of great theoretical in-
terest. But as a group they fail to provide a clear, coherent theory of
cooperative games. Indeed, most of the different solution concepts have
very little logical connection and so cannot be interpreted as special cases
of a general theory.

One may think that this fact is merely a conceptual limitation of classical
game theory, which may be of some importance to the logician. method-
ologist. or philosopher but immaterial to the social scientist whose main
interest lies in possible applications of game theory to economics, political
science, and sociology. Yet, this conceptual limitation does in fact create
major problems also in empirical applications.

First of all, although classical game theory offers a number of alternative
solution concepts for cooperative games, it fails to provide a clear criterion
as to which solution concept is 10 be employed in analyzing any real-life
social situation. Nor does it give a clear answer to the obvious question of
why so many different solution concepts are needed.

Many solution concepts generate some additional dimensions of indeter-
minacy. Even if the decision is made to analyze a given social situation in
terms of some solution concept 4, this will often fail to specify a well-defined
outcome: it rather might tell us no more than that the outcome will be
chosen from some (possibly very large) set S of “acceptable™ outcomes:
indeed. all it may tell us may be that the outcome will be a point lying in
one of several alternative sets S. S, §”. .. .. each equally consistent with the
axioms of the chosen solution concept 4.

An even more serious shortcoming of classical game theory s its failure
to provide any usable solution concepts for some theoretically and em-
pirically very important classes of cooperative (and of less than fully co-
operative) games. These include:

1. Games intermediate between fully cooperative and fully noncooperative
games. Examples are games where some types of agreements are enforce-
able while others are not; games where some groups of players are able
to make enforceable agreements but others are not; and games where

The Need for a New Solution Concept 9

enforceable agreements can be concluded at some stages of the game but
not at other stages.

2 Cooperative games with a sequential structure. (There 15 some overlap
between cases | and 2.) These are games involving two or more successive
stages and permitting agreements to be built up gradually in several con-
secutive steps. Unlike classical cooperative games. in which any agreement
made is final. such sequential games might allow renegotiation and modifi-
cation of earlier agreements at later stages of the game under specified
conditions.

3. Cooperative games with incomplete information. (Since games with in-
complete information, both cooperative and noncooperative. raise some
special problems: we will discuss them at some length in section 1.5,

All these difficulties are due to the fact that the classical theory of
cooperative games systematically neglects any analysis of the bargaining
process among the players, which is probably the most important activity
in any cooperative game. This 1s done by describing this bargatning as
“preplay negotiations” and by assuming that it takes part before the "game”
1s actually played, and that it is therefore not part of the "game™ at all.
This approach of course amounts to relinquishing any serious attempt to
understand how the outcome of the game depends on the specifics of the
bargaining process among players.

1.5 Games with Incomplete Information

One of the most serious deficiencies of classical game theory 1s its inability
to deal with games involving incomplete information. We say that a game
is one with complete information if all players know the nature of the game.
in the sense of knowing the extensive form of the game (the game tree) or
the normal form of the game (the payoff matrix).

A game with complete information can be a game with either perfect or
imperfect information. In a game with perfect information the plavers know
both the nature of the game and all previous moves (made by other players
or by chance) at every stage of the game; in a game with imperfect informa-
tion the players know the nature of the game but have less than full
information about the earlier moves during the game.

In contrast. in a game with incomplete information, the players have less
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than full information about {1} the strategy possibilities and or (2) the
payolf functions of the other ptavers. Problem 2 may arise because the
players may have limited information about:

1. the physical consequences 10 be produced by alternative strategy

combinations,

)

. the other players™ preference rankings over these physical outcomes,

. the other players’ attitudes toward risk taking. or

58]

4. some combination of these factors.

In addition the players may be ignorant about the amount of information
that the other players have about any player’s strategy possibilities and his
payoff function.

Classical game theory cannot handie games with incomplete information
at all (but does cover both games with perfect and with imperfecr informa-
tion as long as these have the nature of games with complete information).
This obviously poses a very serious limitation since virtually all real-life
game situations involve incomplete information. In particular, it very rarely
happens that the participants of any real-life social situation have full
information about each other's payoff functions. Uncertainty about the
strategies available to the other plavers is also quite common.

We can, however, bring a game with incomplete information within the
scope of game-theoretical analysis by using a probabilistic model to rep-
resent the incomplete information that the players have about various
parameters of the game (Harsanyi 1967, 1968a, 1968b). In particular, the
analysis of a game with incomplete information, G, can be reduced to
analysis of a new game, G*, involving suitably chosen random moves. We
call G* a probabilistic model for G. In this new game G* the fact that (some
or all of) the players have limited information about certain basic param-
eters of the game is mathematically represented by the assumption that
these players have limited information about the outcomes of these random
moves.

Formally, this probabilistic model game G* will be a game with complete
information. But it will be a game with imperfect information because of
the players’ having less than full information about the outcomes of the
random moves occurring in the game. Thus our approach essentially
amounts to reducing the analysis of a game with incomplete informa-
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tion. G. to the analysts of a game with complete 1vet imperfect) infor-
mation. G*. which is fully accessible to the usual analytical tools of game
theory.

By constructing suitable probabilistic models, we can produce games
with any desired distribution of knowledge and ignorance among the
players and can study how alternative informational assumptions will
change the nature of the game. We can learn how a player can infer some
pieces of information originally denied to him. by observing the moves
of players who already possess this information, and also how a player
can optimally convey information to other players or optimally withhold
information in accordance with his own strategic interests. (We discuss
the problem of optimally conveying information in chapter 9 where we
analyze a two-person game with incomplete information on both sides.
For the problem of optimally withholding information. see Aumann and
Maschler's discussion. 1966, 1967, 1968. of infinitely repeated two-person
zero-sum games under incomplete information, and also Stearns 1967, cf.
Harsanyi 1977a.)

To be sure. the use of such probabilistic models provides only a partial
solution for the problem of how to analyze games with incomplete informa-
tion. For when a probabilistic-model game G* is constructed for a game
with incomplete information, G, there immediately arises the problem of
what solution concept to use for this newly constructed game G*,

If. in fact, the game G we start with is a noncooperative game with
incomplete information, then this question has an easy answer. The
probabilistic-model game G* derived from G will also be a noncooperative
game (though one with complete information), and G* can be analyzed in
terms of its equilibrium points; the concept of equilibrium points can be ex-
tended to games with incomplete information without difficulty (Harsanvi
1968a. pp. 320-329).

The situation is very different if the game G is a cooperative game with
incomplete information. In this case the probabilistic-model game G* de-
rived from G will not admit of analysis in terms of any cooperative solution
concept of conventional game theory. For example, the Nash solution
for two-person bargaining games, which is an attractive solution con-
cept for games with complete information. cannot be used for two-person
bargaining games with incomplete information or for the probabilistic-
model games derived from them. If we try to use the Nash solution for
this purpose, we obtain completely nonsensical results (Harsanyi 1968a.
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pp. 329-334). Other classical cooperative solution concepts give equally
unsatisfactory resulls when applied to mcomplete information games.
This lack of solution concepts applicable to games with incomplete infor-
mation is another serious weakness of the classical theory of cooperative

games.
1.6 Difficulties with the Concept of Equilibrium Points

Compared with the classical theory of cooperative games, the classical
theory of noncooperative games presents a more satisfactory picture. It has
more theoretical unity becausc it is based on one basic solution concept,
that of equilibrium points. It is also a more complete theory because it tries
to cover all aspects of a game and does not automatically exclude the
plavers’ bargaining moves from its analysis in the way the theory of
cooperative games does. Furthermore the concept of equilibrium points—
and therefore the classical theory of noncooperative games—can be easily
extended to games with incomplete information.

Finally, the concept of equilibrium points is one of the very few game-
theoretical solution concepts that has direct application to games. in both
extensive and normal form. (This has many desirable consequences. One
is that the classical theory of noncooperative games, unlike that of coopera-
tive games. can easily handle games with sequential structure.)

Although the concept of equilibrium points has many strong points, it
also has weaknesses, three of which are important to our discussion:

1. Almost every nontrivial game has many (sometimes infinitely many)
different equilibrium points. Hence a theory that can only predict that the
outcome of a noncooperative game is an equilibrium point—without
specifying which equilibrium point itis—is an extremely weak and uninfor-
mative theory. This difficulty we call the equilibrium selection problem.

2. Any mixed-strategy equilibrium point is. or may appear to be, funda-
mentally unstable (see section 1.8), and therefore not a suitable solution of
a game. This gives rise to what we call the instability problem: how are we
to define a solution for a noncooperative game that has only mixed-strategy
equilibrium points?

3. The third difficulty was pointed out by Reinhard Selten (1965, 1975):
many equilibrium points require some or all of the players to use highly
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irrational strategies (see sections 1.9 and 1.10). He proposed to call such
equilibrium points imperfect equilibrium points. to distinguish them from
perfect equilibrium points, which involve no irrational strategies. The
problem posed by games that contain imperfect equilibrium points we call
the imperfectness problem.

1.7 The Equilibrium Selection Problem

Among the three problems posed by the concept of equilibrium points, the
equilibrium selection problem is of particular importance. To illustrate the
nature of this problem, we consider a very simple two-person bargaining
game, where two players have to agree on how to divide $100: the money
is lost to them if they cannot agree. (We will assume that both players have
linear utility functions for money.) This game can be represented by the
following bargaining model: Each player has to name a real number,
representing his payoff demand. The numbers named by players 1 and 2
will be called x, and x,. respectively. If x, + x, < 100 (if the two players’
pavoff demands are mutually compatible), then both will obtain their
payoff demands. with u; = x, and u, = x,. In contrast, if x, + x, > 100
(if their payoff demands arc incompatible), they will receive zero pavoffs
u, = u, = 0 (as this will be taken to mean that they could not reach an
agreement).

If the players are free to divide the $100 in all mathematically possible
ways, this game will have infinitely many equilibrium points in pure strate-
gies because all possible pairs (x,,x,) satisfying x, + x, = 100, where
Xy 2 0 and x, = 0. will be equilibrium points. But even il we restrict the
players to payoff demands representing integer numbers of dollars, the
game will still have 101 equilibrium points, from (0, 100), {1.99),..., to
{100,0). Clearly a theory telling us no more than that the outcome can be
any one of these equilibrium points will not give us much useful informa-
tion. We need a theory selecting one equilibrium peint as the solution of
the game. The purpose of our new solution concept is to provide a mathe-
matical criterion that always selects one equilibrium point as the solution.
In other words, with our one-point solution we attempt to overcome the
equilibrium selection problem. (But. as we will try to show. our theory also
overcomes the two other problems posed by the concept of equilibrium
points—the instability problem and the imperfectness problem.)
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1.8 The Instability Problem: A New Justification for Use of
Mixed-Strategy Equilibrium Points

To illustrate the instability problem posed by games having only mixed-
strategy cquilibria, consider the game in figure 1.5. The only equilibrium
in this game is in mixed strategies and has the form E = (M. N). where
M =t 9rand N = (.1 (i.e. player I's equilibrium strategy M assigns the
probabilities 4 and £ to his two pure strategies 4 and B. respectively. while
player 2's equilibrium strategy N assigns the probabilities % and § to his
two pure strategies X and Y) To facilitate analysis of this game, we will
add a new row, corresponding to M. and a new column, corresponding to
N, to the payoff matrix (figure 1.6). As can be seen from this enlarged payoff
matrix, if player 1 expects player 2 to use his equilibrium strategy N, then
player I will have no real incentive to use his equilibrium strategy M. This
is so because he will obtain the same payoff u, = 36, regardless of whether
he uses his mixed equilibrium strategy M. either of his two pure strategies
4 and B. or any mixed strategy other than M. Likewise player.2 will have
no real incentive to use his equilibrium strategy N.even if he expects player
! to use the equilibrium strategy M. The reason is player 2 will obtain the
same pavoff u. = 60 regardless of whether he uses his equilibrium strategy
N. either of his two pure strategies X and Y. or any mixed strategy other
than V.

This is what we meuan by saying that the equilibrium point E = (M. N}
is (seemingly) unstable: even if this does not provide an incentive for cither
player not to use his equilibrium strategy, it does not provide an incentive
that would make it positively attractive for him to use his equilibrium
strategy.

We now argue that the instability of such mixed-strategy equilibrium
points i1s only apparent. Even if the players have as complete information
about the payoff matrix of the game as they can possibly have, each player

Figure 1.5
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will always have some irreducible minimum of uncertainty about the other
player’s ;;cluul pavolls. For example, even though the payoff matrix sh}m's
player 2's payoff associated with the strategy pair (4, X) to be H:l.-l.. X) =
30, player 1 will never be able to exclude the possibility that ul. this very
moment this payofl may be in fact 30 — & or 30 + ¢, where.s 15: a small
positive number. This is so because every person’s utility function1s subject‘
10 at least some. very smail. unpredictable random {luctuations because of
changes in his mood or perhaps a sudden urge to usc one of his pure
s(rzltgaies in preference to his other pure strategy.

Thi; means that a realistic modef of any given game will not have fixed
payoffs but rather randomly fluctuating payoffs. even though these fluctua-
tions mav be very small. Mathematical analysis shows that such a game
will havevno mixed-strategy equilibrium points.* Rather, all its equil‘ibrium
will be in pure strategies. in the sense that neither player will ever

points . ;
gies. Instead. he will

intentionally randomize between his two pure strate : :
always find that one of his two pure straicgies will yield him a higher
ff. and this is the pure strategy that he will actually use.

he random {luctuations in the
hat player 1 will find

expected payo

At the same time it can be shown that t
two players pavofls will interact in such a way t .
strategv A to be more profitable than strategy B almost exactly one-third
of [heLI-ime( and B more profitable than 4 almost exactly two-thirds of tl?c
time. As a result, though he may make no attempt to randomize, he.wxll
use his two pure strategies almost exactly with the probabilities prescribed
by his equilibrium strategy M = (1,2). By the same token, though pla'_ver 2
may make no attempt to randomize. he will use his two purg strat.e.g1e‘s X
and Y almost exactly with the probabilities prescribed by his equilibrium

strategy N = (3.1). (For detailed discussion and for mathematical proo

see Harsanyl 1973a.)

Figure 1.6



