


Neural Network
-~ Architectures
An Introduction

Judith E. Dayhoff
L L # R

ﬁ VAN NOSTRAND REINHOLD
New York




To the memory of Margaret Oakley Dayboff,
Dioneer in evolutionary biology.

Copyright © 1990 by Van Nostrand Reinhold

Library of Congress Catalog Number 89-78147
ISBN 0-442-20744-1

All rights reserved. No part of this work covered by the copyright
hereon may by reproduced or used in any form by any means—
graphic, electronic, or mechanical, including photocopying, record-
ing, taping, or information storage and retrieval svstems — without

written permission of the publisher.

Printed in the United States of America

Van Nostrand Reinhold

115 Fifth Avenue

New York, New York 10003

Van Nostrand Reinhold International Company Limited
11 New Fetter Lane

London EC4P 4EE, England

Van Nostrand Reinhold

480 La Trobe Street

Melbourne, Victoria 3000, Australia

Nelson Canada

1120 Birchmount Road

Scarborough, Ontario M1K 5G4, Canada

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Library of Congress Cataloging-in-Publication Data

Dayhoff, Judith E.

Neural network architectures : an introduction / by Judith E.

Dayhoff.
p- cm.
ISBN 0-442-20744-1

1. Computer architecture. 2. Neural computers. 3. Computer

networks. 1. Title: -
QA76.9.A73D39 1990

006.3 —dc20 89-78147

CIP



Neural Network Architectures



Preface

This book was written as a means of introducing both artificial and biological
neural networks to a disparate audience comprising biologists and engineers
as well as business professionals and others. More than an introduction, this
text makes an excellent compendium for those who have already begun to
experiment with neural networks. This is done by focusing on neural network
paradigms, which are of equal use to beginners and professionals. Neural
network paradigms are defined, studied, and explained by providing example
applications and the equations that govern each network’s computations.

This book also covers biological neural systems in a way that is clear and
readable to non-specialists. Considerable depth is provided in the areas of
biological neurons and their synapses, as these are the entities that we hope
some day to emulate. The reader will be exposed to the remarkable complex-
ity of biological neural systems as compared to artificial neural networks.

Emphasis is given to applications and examples using neural networks. An
entire chapter is dedicated to backpropagation applications (Chapter 5), and
another gives a general, comprehensive description of the applications of
neural nets (Chapter 11). Each chapter that covers a neural network paradigm
also includes applications for that paradigm.

The reader, after completing this book, will be able to understand the basic
neural network paradigms and will grasp the general ideas behind neural
network design. He or she will learn the steps of using an artificial neural
network, will become familiar with a broad range of applications possibili-
ties, and will be ready to begin designing experiments.
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Introduction

Neural networks provide a unique computing architecture whose potential
has only begun to be tapped. Used to address problems that are intractable or
cumbersome with traditional methods, these new computing architectures
— inspired by the structure of the brain —are radically different from the
computers that are widely used today. Neural networks are massively parallel
systems that rely on dense arrangements of interconnections and surprisingly
simple processors.

Artificial neural networks take their name from the networks of nerve cells
in the brain. Although a great deal of biological detail is eliminated in these
computing models, the artificial neural networks retain enough of the struc-
ture observed in the brain to provide insight into how biological neural
processing may work. Thus these models contribute to a paramount scientific
challenge — the brain understanding itself.

Neural networks provide an effective approach for a broad spectrum of
applications. Neural networks excel at problems involving patterns —
pattern mapping, pattern completion, and pattern classification. Neural net-
works may be applied to translate images into keywords, translate financial
data into financial predictions, or map visual images to robotic commands.
Noisy patterns— those with segments missing— may be completed with a
neural network that has been trained to recall the completed patterns (for
example, a neural network might input the outline of a vehicle that has been
partially obscured, and produce an outline of the complete vehicle).

Possible applications for pattern classification abound: Visual images need
to be classified during industrial inspections; medical images, such as magni-
fied blood cells, need to be classified for diagnostic tests; sonar images may be
input to a neural network for classification; speech recognition requires
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classification and identification of words and sequences of words. Even diag-
nostic problems, where results of tests and answers to questions are classified
into appropriate diagnoses, are promising areas for neural networks. The
process of building a successful neural network application is complex, but
the range of possible applications is impressively broad.

Neural networks utilize a parallel processing structure that has large num-
bers of processors and many interconnections between them. These proces-
sors are much simpler than typical central processing units (CPUs). In a
neural network each processor is linked to many of its neighbors (typically
hundreds or thousands) so that there are many more interconnects than pro-
cessors. The power of the neural network lies in the tremendous number of
interconnections.

Neural networks are generating much interest among engineers and scien-
tists. Artificial neural network models contribute to our understanding of
biological models, provide a novel type of parallel processing that has power-
ful capabilities and potential for creative hardware implementations, meet
the demand for fast computing hardware, and provide the potential for solv-
ing applications problems.

Neural networks excite our imagination and relentless desire to understand
the self, and in addition equip us with an assemblage of unique technological
tools. But what has triggered the most interest in neural networks is that
models similar to biological nervous systems can actually be made to do
useful computations, and, furthermore, the capabilities of the resulting sys-
tems provide an effective approach to previously unsolved problems.

In this volume we introduce a variety of different neural network architec-
tures, illustrate their major components, and show the basic differences be-
tween neural networks and more traditional computers. Ours is a descriptive
approach to neural network models and applications. Included are chapters
on biological systems that describe living nerve cells, synapses, and neural
assemblies. The chapters on artificial neural networks cover a broad range of
architectures and example problems, many of which can be developed fur-
ther to provide possibilities for realistic applications.

TRADITIONAL VERSUS NEURAL NETWORK
ARCHITECTURE

Neural network architectures are strikingly different from traditional single-
processor computer$. Traditional Von Neumann machines have a single CPU
that performs all of its computations in sequence. A typical CPU is capable ofa
hundred or more basic commands, including adds, subtracts, loads, and
shifts, among others. The commands are executed one at a time, at successive
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steps of a time clock. In contrast, a neural network processing unit may do
only one or, at most, a few calculations. A summation function is performed
on its inputs; incremental changes are made to parameters associated with
interconnections. This simple structure nevertheless provides a neural net-
work with the capabilities to classify and recognize patterns, to perform
pattern mapping, and to be useful as a computing tool.

The processing power of a neural network is measured mainly by the num-
ber of interconnection updates per second; in contrast, Von Neumann ma-
chines are benchmarked by the number of instructions that are performed per
second, in sequence, by a single processor. Neural networks, during their
learning phase, adjust parameters associated with the interconnections be-
tween neurons. Thus, the rate of learning is dependent on the rate of inter-
connection updates.

Neural network architectures depart from typical parallel processing archi-
tectures in some basic respects. First, the processors in a neural network are
massively interconnected. As a result, there are more interconnections than
there are processing units. In fact, the number of interconnections usually far
exceeds the number of processing units. State-of-the-art parallel processing
architectures typically have a smaller ratio of interconnections to processing
units. In addition, parallel processing architectures tend to incorporate pro-
cessing units that are comparable in complexity to those of Von Neumann
machines. Neural network architectures depart from this organization
scheme by containing simpler processing units, which are designed for sum-
mation of many inputs and adjustment of interconnection parameters.

BIOLOGICAL NEURAL SYSTEMS — THE ORIGINAL
NEURAL NETWORKS

Neural network architectures are motivated by models of our own brains and
nerve cells. Although our current knowledge of the brain is limited, we do
have much detailed anatomical and physiological information. The basic
anatomy of an individual nerve cell — or neuron — is known, and the most
important biochemical reactions that govern its activities have been identi-
fied.

A diagram of a nerve cell typical of those in the human brain is shown in
Figure 1-1. The output area of the neuron is a long, branching fiber called the
axon. An impulse can be triggered by the cell, and sent along the axon
branches to the ends of the fibers. The input area of the nerve cell is a set of
branching fibers called dendrites. The connecting point between an axon and
a dendrite is the synapse. When a series of impulses is received at the dendritic
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Figure 1-1. Schematic drawing of a biological nerve cell.

areas of a neuron, the result is usually an increased probability that the target
neuron will fire an impulse down its axon.

The neuron shown in Figure 1-2a was photographed from a tissue culture of
embryonic nerve cells. Although the axon is hidden, the dendritic tree is

Figure 1-2a. A biological neuron magnified 400 X with the dendritic tree in
the foreground (courtesy of Gary Banker and Aaron Waxman, Univ. of Virginia).
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apparent. The many larger fibers in the foreground are dendritic branches; the
smaller fibers that crisscross in the background are axons that synapse onto the
dendrites, bringing incoming impulses from other neurons.

Figure 1-2b shows a typical network of neurons, traced from the human
visual cortex. These neurons appeared when a thin section of the cortex was
impregnated with a Golgi stain, which is taken up by only 2% of the neurons.

g 7 ‘v,lh‘ 2 N ) . 1
i?‘ I A _
ARRS i
o D "“'9” e
7 - F‘\}%' '—5., i IVa
G ' 'l
AT
) : Vb
<$
\\
>:
Ve
Lo
ek
- v
g )
(// 4
A VI
Tt 7

gy / j

Figure 1-2b. A Golgi-stained preparation from the visual cortex of a two-year-
old child showing prominent dendritic arborizations (from Conel, The Postna-

tal Development of the Human Cerebral Cortex, vol VI. Harvard Univ. Press,
1959).
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Figure 1-3. Major structures of the human brain (from Nauta and Feirtag, The
organization of the brain, Scientific American 1979).

The resulting picture indicates the nature of the biological neural network
present, with densely placed neurons and myriad intersecting nerve
branches. (The actual biological network is much more dense than that
shown in the figure because of the sparsity of cells that take up the Golgi
stain.) This picture exemplifies the vast interconnected arrays of neurons that
appear in biological neural networks.

Figure 1-3 depicts the human brain. The basic circuitry of the brain is
considered in terms of general pathways. Details concerning which individ-
ual neurons are connected t6 which other individual neurons have not yet
been mapped in the human nervous system, but considerable research effort
has been put toward elucidating the detailed circuitry of the brain and deter-
mining both the fixed structure and the degree of flexibility present.

The brain is a dense neural network in which the neurons are highly inter-
connected. The total number of neurons in the human brain is estimated at
100 billion (DARPA Neural Network Study, 1988). Each neuron is connected
to perhaps 10,000 eother cells, meaning each biological neuron can send
impulses that may be received by as many as 10,000 target cells.

Figure 1-4 shows a comparison of different biological nervous systems with
artificial neural networks (DARPA, 1988). Speed, in terms of interconnec-
tions processed per second, is plotted against storage, measured in terms of
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Figure 1-4. Speed versus storage for a variety of systems. Speed is measured in
interconnects per second (vertical axis) and storage is measured in intercon-
nects (horizontal axis). The shaded area shows the power of existing simulators
(from DARPA Neural Network Study, 1988).

interconnections. The shaded area represents neural network sizes that are
within the reach of today’s artificial neural net simulations. The leech and
worm, relatively primitive invertebrates, have nervous systems that appear
within the range of existing simulators having fewer than 108 interconnec-
tions. More complex organisms, such as the fly, bee, cockroach, and aplysia (a
sea slug), have nervous systems with considerably more speed and storage
capacity. They appear to exceed the computational capabilities presently
available in simulations. The human nervous system is far larger than the other
systems plotted, and would appear beyond the top right of the graph.

ARTIFICIAL NEURAL NETWORKS —THE BASIC
STRUCTURE

Figure 1-5 depicts an example of a typical processing unit for an artificial
neural network. On the left are the multiple inputs to the processing unit,
each arriving from another unit, which is connected to the unit shown at the
center. Each interconnection has an associated connection strength, given as
w,, w;, ... w, The processing unit performs a weighted sum on the
inputs and uses a nonlinear threshold function, f, to compute its output. The
calculated result is sent along the output connections to the target cells
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Figure 1-5. Schematic processing unit from an artificial neural network.

shown at the right. The same output value is sent along all the output connec-
tions.

The neural network shown in Fig. 1-6a has three layers of processing units, a
typical organization for the neural net paradigm known as back-error propaga-
tion. First is a layer of input units. These units assume the values of a pattern,
represented as a vector, that is input to the network. The middle, ‘‘hidden,”
layer of this network consists of ‘‘feature detectors’’— units that respond to
particular features that may appear in the input pattern. Sometimes there is
more than one hidden layer. The last layer is the output layer. The activities of
these units are read as the output of the network. In some applications, output
units stand for different classifications of patterns.

OUTPUT PATTERNS

INTERNAL
REPRESENTATION
UNITS

INPUT PATTERNS -

Figure 1-6a. An artificial neural network with three fully interconnected
layers (from Rumelhart and McClelland, Parallel Distributed Processing. MIT
Press, 1986).
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Figure 1-6b. A multilayered network with slabs of processing units that are
interconnected with adjacent layers (from DARPA Neural Network Study,
1988).

A larger neural network, in which each layer is organized as a two-dimen-
sional slab of neurons, is shown in Figure 1-6b. Neural networks are not
limited to three layers, and may utilize a huge number of interconnections.

Each interconnection between processing units acts as a communication
route: Numeric values are passed along these interconnections from one



