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INTRODUCTION

Industry uses 3,500 billion kWh equivalents of energy, or nearly 40% of the total consumed in
this country, according to a recent Annual Survey of Manufacturers'. Over 80% of industry’s
share is employed in the chemical process industries (CPl).

It takes only a quick calculaton to show that even a small percentage improvement in
energy efficiency holds vast potential for reducing fuel consumption and cutting operating
costs. And the price of energy is not going down; in the future the savings will be even greater.

In the CPI, heat is the predominant form of energy used. So, in order for engineers to help
meet energy goals, they must have a thorough understanding of heat exchange and its asso-
ciated equipment in CPI processes.

This necessity was underscored in a recent Department of Energy document?, which
included recommendations for energy conservation measures. Some of these are: improve-
ments in process heaters, boilers, steam systems and waste heat recovery systems; the
application of heat exchangers, air coolers and insulation; and housekeeping measures.

In this book, we have presented a range of useful information on the transfer of heat in the
CPI. The opening section focuses on heat exchange equipment, with shell-and-tube exchangers
in the spotlight. That section then weaves through other heat exchanger designs (such as plate
and spiral exchangers) and materials of construction for heat exchangers. Proper operation and
regular maintenance of equipment is a must for peak performance; Section |l presents a series
of articles on that subject.

Sections Ill and IV outline heat transfer considerations in reaction units and piping sys-
tems, respectively. The design and optimization of fired heaters for process fluids in the CPI
are thoroughly covered next, in Section V. Steam, which is by and large the most important heat
transfer medium, is discussed in Section VI, which includes articles on boiler design and im-
provement as well as methods to reduce steam losses in transmission lines. Cooling towers
are discussed in Section VII. This is followed by a section on heat transfer calculations, and
one on water and other media used as cooling or heating agents. Finally, methods of waste-
heat recovery are outlined in Section X.

This book was designed to be helpful to engineers in many sectors of industry. For the
design engineer, it will be a useful guide for the proper design and specification of heat ex-
change systems and equipment. For the plant operations engineer, it provides timely tips on
saving energy and lowering operating costs through design modifications and correct oper-
ating procedures. The plant process engineer will find it a handy troubleshooting guide for
tackling operating problems. For the plant maintenance engineer, practical details on pro-
grammed and crises maintenance are presented.

All in all, this book provides a combination of theoretical and practical information on
process heat exchange that is virtually unavailable elsewhere.

)

August 1979

1. 1975 Bureau of Census survey
2. Industrial Energy Efficiency Improvement Program, Annual Report Support Document, Vol. I, June 1978, Dept.
of Energy, Asst. Secretary for Conservation and Solar Applications, Div. of Industrial Convervation.
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How to select the optimum
shell-and-tube heat exchanger

Developing an optimum unit can be a complex process because of
the many interdependent parameters involved. An experienced
engineer is required—either to design the exchanger himself
or to evaluate offers from vendors based on his specifications.

John P. Fanaritis and James W. Bevevino, Struthers Wells Corp.

Because a shell-and-tube heat exchanger has no
moving parts and exchanges heat between two fluids,
an engineer could develop the mistaken impression
that the design of this equipment is simple and
straightforward. Although this type of exchanger is not
usually a sophisticated piece of equipment, many con-
siderations are involved in obtaining the optimum de-
sign for a given service.

This article does not provide design formulas or spe-
cial methods for determining the optimum design, be-
cause these vary from process to process. Instead, the
parameters involved and the complexities that sur-
round the design are presented.

Included are charts and drawings—taken from the
Tubular Exchanger Manufacturers Assn. (TEMA)—
that pertain to the construction features of common
heat exchangers, as well as to the nomenclature in-
volved in describing them.

Also included are curves and data that provide ap-
proximate present-day prices for the several types of
heat exchangers. In addition, a curve is provided to es-
timate the expected surface area for a given shell size,
based on alternate tube-lengths. These graphs and
charts can be used as guides in determining the ap-
proximate size and today’s prices for the common vari-
ety of shell-and-tube heat exchangers.

Designing such an exchanger is based on the de-
signer’s knowledge and experience in heat transfer, me-
chanical design, utility, maintenance and cost. Inas-
much as the considerations that enter into the selection

Originally published July 5, 1976

of the optimum heat exchanger are very difficult to
evaluate quantitatively, a designer’s experience is of the
utmost importance.

Every designer’s goal should be to provide a heat ex-
changer that will meet the specified performance re-
quirements and provide long-term, trouble-free service
at a minimum cost to the user. Due to the complexity
in the design, and the interrelation between variables,
each exchanger application will have as many different
designs offered as there are designers or bidders. Undex
these circumstances, the ultimate choice rests with the
purchaser.

Although each vendor or bidder warrants that his
proposed design will meet the specified performance re-
quirements, many questions require answers from the
user in selecting the design. For example:

m Has the shell side of the heat exchanger been prop-
erly evaluated for maximum efficiency in heat-transfer
rate, corresponding to the pressure drop?

® Are fluid velocities within reasonable limits, to
avoid erosion of components or mechanical failure due
to flow-induced vibrations?

m Have vents and drains been included where
needed?

m Has differential expansion between the shell and
tubes been considered?

B What type of tube-to-tubesheet joint is best?

m Are the specified metals compatible for good me-
chanical design and weldability?

Questions like the above must be answered to make a
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reasonable assessment of a heat-exchanger design.

Usually, the repair costs connected with correcting a
deficiency in a heat exchanger are only a small part of
the penalty paid for poor design; the resulting loss in
plant production for one day will often cost many
times the purchase price of the heat exchanger.

Some exchangers are used in critical services involv-
ing extremely high pressures and/or temperatures, and
handle hazardous fluids such as hydrogen. The pur-
chaser must evaluate whether a particular vendor has
the experience to provide the design integrity and the
quality in fabricating for such special services.

Performance data specified by user

Selecting a heat-exchanger design must not be
done casually; a considerable amount of time may eas-
ily be spent in heat-transfer and mechanical-design cal-
culations. A purchaser should establish firm require-
ments for his heat exchanger at the time he asks for
bids. The practice of imposing on a vendor the design
and pricing of alternative selections is wasteful and in
many cases costly.

To provide an optimum heat-exchanger design, the
manufacturer or designer should be furnished by the
user with the following minimum service information:
(1) total heat load, Btu/h; (2) fluid quantities entering
and leaving the exchanger, 1b/h; (3) specific heat, ther-
mal conductivity, viscosity, molecular weight or spe-
cific gravity of the fluids in appropriate units; (4) heat-
exchanger ingoing and outgoing temperatures, °F; (5)
operating pressures, psia; (6) allowable pressure drops,
psi; (7) fouling factors; (8) design pressures and tem-
peratures, psia and °F; (9) heat-exchanger type; (10)
materials of construction; (11) tube-wall thickness for
corrosion considerations, in; (12) corrosion allowance;
(13) specifications, codes and standards; (14) size or
space limitations; and (15) horizontal or vertical instal-
lation.

Process conditions

Since the size and resulting cost of a heat exchanger
depend greatly on the log-mean-temperature difference
(LMTD), a process designer should consider the effect
of the operating temperature levels in the early stages
of process design.

A high LMTD generally results in a smaller heat ex-
changer. Therefore, when considering operating tem-
perature levels, a larger LMTD can be achieved by in-
creasing the temperature level of the cooling medium.
Close temperature approaches, where small differ-
entials exist between the inlet of one fluid stream and
the outlet of the other, will result in very low LMTDs.

There are no specific rules for determining the opti-
mum operating temperatures. These should be selected
based on the service and utility of the heat exchanger.
Inefficient design and poor heat-exchanger perform-
ance can result when the LMTD is too high or too low.
For a good design that is to cover many services, the
lesser temperature difference between the shellside and
the tubeside fluids should be greater than 10°F; the
greater temperature difference should exceed 40°F.

Flow quantities—Fluid flowrates (Ib/h) on both the
shell and tube sides can affect the size and design of an

exchanger. A designer may be forced to resort to mul-
tiple shells in series when the LMTD and flow quan-
tities are low, and when a large temperature difference
exists between the shellside and the tubeside fluids. Un-
der these conditions, a countercurrent flow pattern
must be maintained.

Under low-flow conditions, the designer may resort
to multiple shells in series, to achieve reasonable fluid
velocities and heat-transfer rates. When flowrates are
extremely high for the surface requirement, multiple
shells in parallel may be needed to achieve reasonable
velocities, pressure drops, and an efficient heat-ex-
changer design.

Fouling factors—Dirt, scale or other deposits formed on
the tube—inside and/or outside—which results in resist-
ance to the flow of heat is called “fouling.” The size
and cost of a heat exchanger are related to specified
fouling resistance; haphazard guessing of fouling can
be costly.

Inasmuch as fouling factors are difficult to deter-
mine, they should be based on experience. Therefore,
the user of the heat exchanger has the responsibility of
providing the designer with the fouling factors peculiar
to his operation. There are very limited data available
for accurate assessment of the degree of fouling that
should be applied for given service conditions. Fouling
varies and depends on the material of construction of
the tubes, the types of fluids involved, temperatures,
velocities and other operating conditions. Thus, the se-
lection of fouling factors is arbitrary. Many complaints
in heat-exchanger operation that cannot be traced to
errors in thermal design are generally traced to fouling.

If heavy fouling is anticipated for a particular ser-
vice, the user should make provisions for periodic
chemical or mechanical cleaning of the exchanger. If
heavy tubeside fouling is foreseen, a straight-tube heat
exchanger with larger-diameter tubes (1-in O.D. at
least) should be specified. But when heavy shellside
fouling is anticipated, the purchaser should specify a
removable-bundle design, with tubes on a square pitch
for mechanical cleaning of the bundle.

Allowable pressure drop—Selecting the optimum allow-
able pressure drop involves consideration of the overall
process. However, high pressure drops may result in a
smaller size (less costly) heat exchanger for other than
isothermal-service requirements. The savings in the ini-
tial cost of a heat exchanger must be evaluated against
a possible increase in operating costs.

For reasonable designs, the allowable pressure drops
should be 5 psi, or higher for operating pressures in ex-
cess of 10 psig. In some instances, it is not practical to
use all of the available pressure drop, because the re-
sulting high fluid velocities could cause erosion or vi-
bration damage to heat-exchanger components.

Heat-exchanger type and maintenance

Since there are many shell-and-tube heat-exchanger
types to choose from, the preferred heat exchanger
should be based on desired characteristics for utility
and maintenance. The various types and construction
features are shown in the “Standards of Tubular Ex-
changer Manufacturers Assn.” (TEMA), and repro-
duced in this article for convenience (Fig. 1 and 2).
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Comparative costs between the common types of heat
exchangers can be derived from the graphs. Supple-
mental information is included further on in this ar-
ticle.

Users or purchasers are responsible for specifying de-
sign conditions and materials of construction, because
these factors, plus the corrosion allowance and ‘specified
tube-wall thickness, are relevant to the service life of

the equipment. Materials of construction are generally
selected based on pressure-temperature requirements;
corrosion resistance to the operating fluid streams; and
economics, based on anticipated service life versus ini-
tial cost.

Careful consideration should be given to the selec-
tion of tube material and tube-wall thickness, because
heat is transferred through the wall of a tube. There-

Courtesy of Tubular Exchanger Manufacturers Assn.
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fore, desirable characteristics should include material
with high thermal conductivity and a thin wall.

Fluid allocation

Physical-property data should be as accurate as pos-
sible. Data for specific heat, density and/or molecular
weight, thermal conductivity and viscosity should be
provided to the designer.

To determine which fluid should be in the shell and
which one in the tube, consider the following factors:

Corrosion—Fewer costly alloy components are needed
if the corrosive fluid is inside the tubes.

Fouling—Placing the fouling liquid in the tubes al-
lows better velocity control; increased velocities tend to
reduce fouling. Straight tubes allow mechanical clean-
ing without removing the tube bundle.

Temperature—For high-temperature services requiring
special or expensive alloy materials, fewer alloy compo-
nents are needed when the hot fluid is placed within
the tubes.

Pressure—Placing a high-pressure stream in the tubes
will require fewer high-pressure components.

Pressure drop—For the same pressure drop, higher
heat-transfer coefficients are obtained on the tubeside.
A fluid with a low allowable pressure drop should gen-
erally be placed inside the tubes.

Viscosity—Higher heat-transfer rates are ordinarily
obtained by placing a viscous fluid on the shell side.

Flowrate—Placing the fluid with the lower flowrate on
the shellside usually results in a more economical de-
sign. Turbulence exists on the shellside at much lower
velocities than within the tubes.

Considerations by the designer

A heat-exchanger designer should be informed at the
start regarding any size or space limitations for installa-
tion of the exchanger. Limited space can exist when the

Struthers Wells Corp.

heat exchanger is to be installed in a building or within
a structure with other equipment.

Restrictions on the size of a heat exchanger may af-
fect the initial cost, because the designer may not be
able to optimize the design. This is particularly true
when restrictions are imposed on tube lengths.

In addition to being a specialist in heat transfer, a
designer should have a firm grasp of mechanical de-
sign, fabrication, and costs of the equipment involved.

He must evaluate the many variables in establishing
the following characteristics of the heat exchanger: (1)
tube O.D. and length; (2) tube pitch; (3) number of
tube passes; (4) number of shell passes; (5) number of
baffles and baffle type; (6) number of shells; (7) fluid
velocities; (8) actual pressure drops; (9) shell size; (10)
fluid distribution at the inlet and outlet of the shell;
(11) tube-to-tubesheet attachment; (12) ease of mainte-
nance; and (13) vibration, operating differential-ex-
pansion between shell and tubes, and other potential
problem areas.

Tube size and length

Heat-exchanger designs with small-diameter tubes
(%-in to 1-in O.D.) generally are more economical than
designs with larger tubes, because the smaller tubes
provide for a more compact unit. However, the use of
such small tubes may be prohibited by an extremely
low allowable tubeside-pressure-drop. Normally, %-in-
O.D. tubes are the smallest considered for process heat
exchangers, but there are some applications where
smaller tubes may be better. Larger-diameter tubes are
used when heavy fouling is expected, and when the in-
side of the tubes is to be cleaned mechanically.

Because tubes in the %-1-in-O.D. range are normally
common for shell-and-tube exchangers, tubes in these
sizes are more readily available in various materials of
construction. Under equal-velocity conditions, smaller
tube diameters increase the heat-transfer coefficient, as
well as the pressure drop.

Ordinarily, the investment per unit area of heat-
transfer surface is less for longer heat exchangers.
Therefore, the purchaser should avoid restrictions on
length wherever possible. In addition to potential sav-
ings in construction through the use of longer tubes,
higher heat-transfer rates (less surface) are possible in
sensible-heat-transfer service.

Tube pitch or arrangement

In shell-and-tube heat exchangers, tubes are gener-
ally arranged on a triangular, square or rotated-square
pitch. Although the tube pitch can vary for a given
tube size, the designer should limit the center-to-center
spacing to the minimum, a$ outlined in the TEMA
Standards, for good mechanical design.

Triangular-tube patterns provide better shellside
heat-transfer coefficients in sensible-heat exchange, and
provide more surface area for a given shell diameter.
Square-pitch tube patterns are generally used when
mechanical cleaning of the outside of the tubes is neces-
sary or expected. However, square- and rotated-square-
tube patterns provide lower pressure drops, and, there-
fore, correspondingly lower heat-transfer coefficients in
most cases involving sensible heat.



