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INTRODUCTION

In 1984 we were invited, by the Department of Mathematics of University of
Limoges, to give several lectures on a subject considered interesting in Nonlinear
Analysis and Optimization.

So, we decided to present the subject "Complementarity Problems (In Infinite
Dimensional Spaces)".

After this course, we became quickly conscious that a volume on all mathematical
aspects of these nice problems is necessary.

The literature on this subject is already impressive and the task to write this
volume was not easy.

The Complementarity Problem is considered by many mathematicians, as a large
independent division of Mathematical Programming Theory, but our opinion is quite
different.

The Complementarity Problem represents a very deep, very interesting and very
difficult mathematical problem. This problem is a very nice research domain because
it has many interesting applications and deep connections with important chapters of
the Nonlinear Analysis.

Our principal aim is to present the all principal mathematical aspects about the
Complementarity Problems.

To be agree with this aim we consider generally, Nonlinear Complementarity
Problems in infinite dimensional spaces. But, the finite dimensional case is not
neglected and several important results about the linear or the Nonlinear
Complementarity Problems specific for this case are also presented.

Several problems arising in various fields (for example: Economics, Game
Theory, Mathematical Programming, Mechanics, Elasticity Theory, Engineering, and,
generaly, several "Equilibrium Problems") can be stated in the following unified

form:

given f:Rz o Rn a mapping,

find x_ € Rn such that,
(1): o +

n
> =
f(xo) € R+ and <x°, f(xo) o,

n
(where < , > is the inner product, <x,y >= } xiyi).
i=1

Problem (1) is called the Complementarity Problem and the origin of this problem

is perhaps in the Kuhn-Tucker Theorem for nonlinear programming (which gives the

necessary conditions of optimality when certain conditions of differentiability are



met), or perhaps in the old and neglected Du Val's paper. [P. Du Val, The Unloading
Problem for Plane Curves, Amer. J. Math., 62 (1940), 307-311.]

Certainly, one thing is clear: in 1961 Dorn showed that, if A is a
positive-definite (but not necessarily symmetric) matrix, then the minimum value of
the quadratic programming problem,

min <x, Ax + q >
xe?

(2): D= {xeR": 0 < x , 0 < Ax + q}

qeRn
is zero. [W.S. Dorn, Self-dual Quadratic Programs, SIAM J. Appl. Math., Vol.9, Nr.l,
(1961), 51-54.]

Dorn's paper was the first step in treating the Complementarity Problem as an
independent problem.

In 1963 Dantzig and Cottle generalized Dorn's result to the case when all the

principal minors of the matrix A are positive. [G.B. Dantzig and R.W. Cottle,

Positive semi-definite Programming, (Nonlinear Programming. A course. J. Abadie

(ed.). North-Holland, Amsterdam, (1967), 55-73)].

The result annouced in 1963 by Dantzig and Cottle was generalized in 1964 and
1966 by Cottle to a certain class of nonlinear functions. [R.W. Cottle, a) Notes on
a Fundamental Theorem in Quadratic Programming, SIAM J. of Appl. Math., Vol. 12,
(1964), 663-665; b) Nonlinear Programs with Positively Bounded Jacobians, SIAM J. of
Appl. Math. Vol. 14, (1966), 147-158].

Also, in 1965 Lemke proposed the Complementarity Problem as a method for solving
matrix games. [C.E. Lemke, Bimatrix Equilibrium Points and Mathematical Programming,

Manag. Sci., Vol. 11, Nr 7, (1965), 681-689].

Certainly, one of the first important papers on the Complementarity Problem is
the Ingleton's paper, [A.W. Ingleton, A Problem in Linear Inequalities, Proc. London
Math. Soc., Vol. 16, (1966), 519-536], which showed the importance of the

Complementarity Problem in engineering applications.

It seems that the term "Complementarity" was proposed by Cottle, Habetler and

Lemke, and the reason is the following observation.

A solution xo of problem (1) is said to be nondegenerate if at most n compo-

ponents of 2n-components vector (xo, f(xo ) equal zero.

Otherwise, it is a degenerate solution.

o o
We denote, Nn = {1, 2; s n}. If x = (xi)i=1, 2, ..., n

is a nondegenerate solution of problem (1) and yo = f(xo), then the sets,

a={i|x] >0}; B = (ily] >0}, where y° = (v7) )

i=1l, 2, ..., n

are complementary subsets of N (that is, A = Cy B).
n



After 1970 the theory of the Complementarity Problem has known a strong and
ascending development, based on several important results obtained by Cottle, Eaves,
Karamardian, Mangasarian, Saigal, Gould, Garcia, Moré, Kojima, Megiddo, Kaneko and
Kostreva, Pang, etc.

In Chapter 1 we present some preliminary definitions and the definitions of
principal complementarity problems.

In Chapter 2 we give examples of practical problems which have as mathematical
model a specific complementarity problem. Other models, especially in infinite
dimensional spaces are presented in other chapters.

The important mathematical problems equivalent to complementarity problems are
studied in Chapter 3.

In Chapter 4 we present the principal existence theorems and we study some
properties of solution set.

The order Complementarity Problem and the Implicit Complementarity Problem are
respective studied in Chapter 5 and 6.

In Chapter 7 we introduce the notion of isotone projection cone and we use this
notion to study the Complementarity Problem.

The last chapter is devoted to the sutdy of several problems, about the
Complementarity Problem not considered in other chapters and which are opened to new
researchers.

The last time, two books on the Complementarity Problem were published: 1°)
K.G. Murty: Linear complementarity, linear and nonlinear programming. Heldermann

Verlag, Berlin (1988). 2°) R.W. Cottle, J.S. Pang and R.E. Stone: The linear

complementarity problem. Academic Press (1992), but our volume is completely
different and essentially it is a complementary book.

We hope that our notes form a satisfactory introduction to the study of the
Complementarity Problem, which is a fascinating problem by its simplicity and
profoundness, and by the fact that it is a cross-point of several chapters of
fundamental and applied mathematics.

The part on numerical methods solving complementarity problems is not considered
in this volume, since this part can be considered as a subject for another volume.

Many numerical methods for the Linear Complementarity Problem are studied in
the cited books.

To select the subjects considered in this volume the author used the openness to
new developments and his personal preferences, since the principal motor in

mathematics is the pleasure to do mathematics.

G. Isac
St-Jean, Québec
1992



CHAPTER 1

PRELIMINARIES AND DEFINTIONS OF PRINCIPAL COMPLEMENTARITY PROBLEMS

1.1 Notations, definitions and necessary results. In this section we specify some

terms and notations used systematically in this paper.

First, we suppose known the definitions and the fundamental properties of
Hilbert, Banach and locally convex spaces [B8], [B9], [Bl6].

We denote by (H, <, >) a Hilbert space, by (E, I I) a Banach space and by E(T) a
locally convex space. In this paper we consider only real vector spaces and it is
clear that every Banach or Hilbert space is a locally convex space.

*
If E(t) is a locally convex space, then E denotes the topological dual of E.

We say that <E, F> is a dual system if, E and F are vector spaces and <, > is a
bilinear functional on E x F such that,

1°) <x, y>= 0, for each xe E = y =0,

2°) <x, y>= 0, for each ye F = x = 0.

If E(t) is a locally convex space, we denote by <E, E* > the dual system
defined by the bilinear functional, <x, u>= u(x); for every x € E and every u € E*.

Let E be a real vector space. A subset Kc E is said to be a convex cone if the
following conditions are satisfied:

cll) K+ Kc K

c,2) (VA€ RO €K).

If K€ E is a convex cone, then we can define a preorder on E by:
"x < y" <=>y -xe K.

Always the preorder defined on E by K, will be denoted by "< ".

We can prove that, if Kc E is a pointed convex cone, that is, K is a convex
cone and satisfies in addition,
ey) K N(=K) = {o},

then the preorder "< " is an order, that is, it is a reflexive,

transitive and antisymmetric relation.

Also, it is important to remark that, if K € E is a pointed convex cone, then

the order " < " is compatible with the linear structure, that is, the following two

conditions are satisfied:

01) xSy= x+z<y+z; Vx,y, z€ E,

02) xSy => ax < ay; Vae Ry, Vx, ye E.



If for the vector space E is defined a pointed convex cone K c E, then we say

that (E, K) is an ordered vector space.

Conversely, if on the vector space E is defined an order "<" satisfying 0;)
and 02) then the set, K = {x € Elx 2 0} is a pointed convex cone.

An ordered vector space (E, K) is said to be a vector lattice if in addition,
every non—empty finite subset of E has greatest lower bound.

Hence, if (E, K) is a vector lattice, then in particular, there exists sup (x,
y) € E for every x, y € E. In this case there exists also, inf (x, y) € E and we
have, inf (x, y) = - sup (-x, -y).

Obviously, if we consider the n-dimensional real vector space,

R" = {xlx = (xl, Xys wses xn), X, € R; Vi =.l, 2, «.., n} then
R: = {(xl, Xys eees xn)lxi 20; Vi =1, 2, ..., n} is a pointed convex cone and
" £ " is exactly the usual order considered on R" and (Rn, R:) is a vector
lattice.
We observe that, Rn is a Hilbert space with respect to the inner
I
< > = =
product, <x,y 1%1 XYy where, x (xi)i=1,2,...,n and
Y= 0401,2,0000n

Several interesting examples and properties of ordered vector spaces we find in
[B12], [Bl16].

If <E,F> is a dual system and K © E is a convex cone, then we denote,

K* = {u € F|<x,u> 20 ; Vx € K},

K° = {ue Fl<x,u> < 0 ; Vx e K}
and we observe that K* (resp. K°) is a convex cone.

The cone K* (resp. K°) is called the dual (resp. the polar) cone of K. If K is
closed then K = K¥* = (K*)*,

Consider a dual system <E,E*>, where E(T) is a locally convex space and f:E * R
a functional.

The functional f is said to have a Gateaux derivative at x, € E if there
exists u(x,) € E* such that,

(G) : lim [f(x + Ax) - f(x )]/A =<x, u(x »; Vxe E.
A0 o o o

We denote, V f(x,) = u(xy) and Vf(x,) is called the Giteaux derivative, or

the gradient of f at x,.
If for every X, € E holds (G), the functional f is said to be differentiable

in the Giteaux sens in E and the operator 3g:E + E*, which with every Xo
associates 3g(x,) = VE(x,) is said to be the Giteaux differential of f in E.

Let f:E » RU{+°} be a convex functional and x,€ E.



The functional f is saild to be subdifferentiable at x, if the set,
3f(xy) = {ue E*|f(x)-f(xo) 2 <x=Xg,u >; Vx € E}

is non-empty.
The set 3f(x,) is said to be the subgradient of f at x,.

I1f for every x, € E , 3f(x,) # ¢, we say that f is subdifferentiable in E
and the application, 9f:E + ZE*, which with every x, € E associates 3f(x,)
2E* 15 called the subdifferential of f.

We remark that, if f is Giteaux differentiable at x, then 3f(x,) =
{VE(xo)} e
Let K< E be a convex set. The indicator of K is the function defined by:

0 if xe K

Y -
K(X)— 4 {f xq K

If K< E is a convex cone, then we have,

= {x* * | x* ° *>=
BWK(xo) {x* e E lx € K° and <x_, x*> o}

Consider again the dual system <E,E*> and f:E + 2E *a mapping. The
effective domain of f is, D(f)={x € Elf(x) # 0} and 1its graph 1is,
Gr(f) = {(x,£(x))|x e D(H)}.
The mapping f is said to be monotone if,
(Vx,y D(£))(Vx*cf(x))(Vy*e¢f(y))(<x-y, x*-y*> 2 0).
and f is said to be maximal monotone if it is monotone and there does not exist

£:E + 2E* such that f is monotone and Gr(f) € Gr(f).
*

The mapping f is said to be a-monotone if there exists a strictly increasing
function a:[0, +=*[ — [0, +=[ such that,
°1) a(0) = 0,

62) lim a(t) = +=,
tw

* * * *
33) (Vx, ye D(f))(V x € £(x))(Vy € f(y))(<x-y, x =y > 2Ux=yla(lix=-yl),
Also, the mapping f:E =+ 2E* 45 said to be strictly monotone 1if:

ml) f is monotone,

* * * *
m2) <x -y, x =-y>>0, if x#?y, x € f(x) and y ¢ f(y).

2
If f is a-monotone, where a(t) = pt™, P € R+\{0} then we say that f is strongly
monotone.

A mapping f:C =+ E*, where C is a convex subset of E is said to be
hemicontinuous if it is continuous from the line segment of C to the weak topology
*
of E .
We recall that an operator, f:E + F, where (E, ¥ V), (F, I 1) are two Banach

spaces, is k-Lipschitz if there exists a constant k > 0 such that,



If(x) — £(y)I < kllx — yll; V x, y € E.
If 0 <k <1 then f is said to be a contraction.

Finally, we denote by Mnxn (R) the space of n x n real matrices. If for every

n € N we denote, Pn ={1, 2, «e., n} and P = {P } then a matrix A € Mnxn (R) is

neN

a function A:P_ x P + R.
n n

We denote, an = A(i, k).

If P © Pn and A € Mnxm (R), we denote by A(P) = (the restriction of A to

A|PxP
PxP).
The real number, det A(P) is called the principal minor of order P of A.

The following fundamental results are necessary in the development of this

paper.
*
Let <E, E > be a dual system where E(T) is a locally convex space.

* *
We say that, an element x € E 1is normal to a convex set K € E at a point x if:

nl) x € K,

n2) (V y € K)(<y - x, x*> < 0)

*
For each x € E, the set of all x normal to K at x is called the normal cone to

K at x.

The normal cone to K at x 1is weak* closed convex cone in E*, it is empty when
X $ K and it contains at least the zero element of E* when x € K.

The multivalued mapping from E to E* which assigns to each x € E the normal cone
to K at x is called the normality operator for K.

The normality operator for K is actually the subdifferential of the indicatrix
WK of K, so that it is a maximal monotone operator with effective domain K(if K is
non-empty).

The following result was proved by Rockafellar and it is a theorem of Browder-

Stampacchia type.

Theorem [Browder—Stampacchia-Rockafellar]. [B.l4]

Let (E,I ) be a Banach space and let K € E be a non—empty closed convex

subset. Let fl:E + E* be the normality operator for K and let f, 2:E * E* be a
2

monotone operator (not multivalued and not necessarily maximal) such that, D(f.) oK.
&

If f, is hemicontinuous then f, + f  is a maximal monotone operator.
L £ 3 L

A mapping f:E * E* is said to be bounded, if for every bounded set B c E, f(B)
is bounded.



Theorem [MOSCO] [B10]

Let (E, | II) be a reflexive Banach space and let K< E he a closed convex cone.

*
Suppose that f:K + E is a bounded, hemicontinuous strictly monotone operator

and consider {K [ a family of non-empty closed convex subsets of K.

Then, for every r there exists a unique element x € K such that, <z-x ,f(x P2
T r T r

20; Vz € K .
—_—r

Theorem [Rockafellar] [Bl4]

*
Let (E, | I) be a reflexive Banach space and let f:E * E be a maximal monotone

operator.
*
If there exists a real number B>0 such that, (Vx€D(£))(IxI>B)(Vx €f(x))(<x,x>>0)

then there exists an element x € E such that, 0 € f(x ).

1.2 Complementarity problems. (Definitions and problems). Dorn [A75] considered in

1961 the following optimization problem,

min £(x)
xeF

(1.2.1): | where: F = {xeR%|x 20, Ax + b > 0}

A€My, (R)>DER™ ang £(x) = <x, Ax + b >

and he showed that, when A is a positive definite (thought not necessarily symme-

tric) matrix, then the quadratic program (1.2.1) must have an optimal solution and

min £(x) = 0.
xefF

Dorn's paper was the first step in treating the complementarity problems.

In 1964 Cottle [A42] studied problem (1.2.1) under the assumption that A is a

positive semidefinite matrix and he remarked that, in this case it is not true that

(1.2.1) must possess an optimal solution.

However, if A is positive semidefinite and F # ¢ then an optimal solution for

(1.2.1) exists and again, min f(x) = 0.
x€
After three years, Dantzig and Cottle [A71] constructively showed that, if A is

a square (not necessarily symmetric) matrix, all of whose principal minors are

positive, then problem (1.2.1) has an optimal solution x, satisfying the following
equation,
(1.2.2): <x,, Ax, + b>= 0.

This result was later generalized by Cottle [A43].

More precisely, Cottle considered the following nonlinear program associated to

a continuously differentiable mapping h:RT + RR,



min f£(x)
xefF
1.2.3): where: f(x) =< x, h(x)> and

F= {xe R%|x >0, h(x) > 0}
and he showed that, if X is an optimal solution of program (1.2.3) and the Jacobian

matrix Jh (xo) has positive principal minors, then x° satisfies the following

conditions:
X 2 0; h(xo) >0 and

1.2.4):
<X, h(xo) > =0

Thus, in relation with program (1.2.3) Cottle obtained in 1966 the first nice

result on the Nonlinear Complementarity Problem. This result is the following.

Consider a differentiable mapping h:Rn - Rn.

We say that h has a positively bounded Jacobian matrix J (x), if there exists a
Iy

real number 0 < § <1 such that for every x ¢ Rn, each principal minor of Jh(x) is

1]-

A solution (y, x) of the equation y - h(x) = 0 is nondegenerate if at most n of

an element of the interval [5,8_
its 2n components are zero.

Theorem 1.2.1 [Cottle] [A43]

LE h:Rn - Rn is a continuous differentiable mapping such that the solutions of

y - h(x) = 0 are non degenerate and if h has a positively bounded Jacobian matrix

Jh(x), then there exists an element x € R: such that, h(x )20 and <x , h(xo)> =0,
O O o
We note that another important result which contributed to the development of

the Complementarity Theory is the Lemke's paper [A 173]. In this paper Lemke

proposed the Complementarity Theory as method for solving matrix games.
Certainly, the development of the Complementarity Theory was imposed by a large

variety of applications in fields as: Optimization, Economics, Games Theory,

Mechanics, Variational Calculus, Stochastic Optimal Control Theory etc.

The Complementarity Theory is closely linked with two other problems, the

solution of variational inequalities and the determination of the fixed points for a

given mapping.

Thus, the existence theorems and the methods used in the study of the last two
problems are widely used in the Complementarity Theory and conversely, the ideas and
methods developed specially for complementarity problems are used to solve
variational inequalities or to solve fixed point problems.

In this section we present the principal complementarity problems studied till
now.

Some of these problems has been much studied till now, but other ones are very

little known.
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Concerning the Complementarity Problem we distinguish two entirely distinct

class of problems: the Topological Complementarity Problem (T.C.P.) and the Order

Complementarity Problem (0.C.P.).

A. Topological Complementarity Problems.

In this class we have the following problems.

A.1-The generalized complementarity problem.

Let <E, F >be a dual system of locally convex spaces.

For a given closed convex cone K € E and a mapping f:K * F, the Generalized

Complementarity Problem (associated to K and f) is,

find x, € K such that,
(G.C.P.):
f(xo) € K* and <x,, f(x,) > = 0.

Remarks
(1.2.1) 1If f(x) = L(x) + b, where L:E > F is a linear mapping and b an element of F

then we have the Linear Complementarity Problem (L.C.P.).

(1.2.2) 1If f:K * F is a nonlinear mapping, then we have the Nonlinear

Complementarity Problem (N.C.P.).

n
(1.2.3) If E=F = Rn, K = R:, <X, y> = Z XYy where x = (xi), y = (yi) € Rn,
i=1

A e Mnxm(R) and b € Rn, then we obtain the classical Linear Complementarity Problem,

find x; 2 0 such that
(L.C.P.):

\"

Axg + b
(In this case, K = K*).

0 and <x5, Ax, + b > =0

(1.2.4) The following Special Linear Complementarity Problem is used in the study

of some structural engineering problems [Al185], [Al52].
n

We consider, E = F = Rn, K = Rn, <x, y> = 2 X, y,, (where x = (x,), v = (y.)),
+ 22 i i

M, N, P e Mnxm(R)’ q, T € R" and supposing that f(x, v) = q + Mv + Nx and y(v)=r-Pv,
we are interested to study the following complementarity problem:

find x , v_€ R" such that,
o’ o +

n n
(S.L.C.P.)¢ f(xo, vo) € R, y(vo) € R,
<V f(xo, vo) > = 0 and <X s y(vo) >=0
We can show that problem (S.L.C.P.) is equivalent to an ordinary linear
complementarity problem.

Indeed, if we set,

z =[5 q, = 3 L= ol F@) =12 + q )
n

and if we consider, E = F = Rzn, K = R2n’ X, Y = 2 X.Y.,; X=(X,); Y=(Y,),
+ oy LA i i
then problem (S.L.C.P.) is equivalent to the following linear complementarity

problem:



£ind Z_€ R°™ such that,
o] +

(1.2.5):
2n

i €
find F(Zo) R+

< > =
and Zo’ F(ZO) 0

A.2-The Generalized Multivalued Complementarity Problem.

This problem is important in the study of some practical problems, as for
example some problems defined in Economics.
If <E, F> is a dual system of locally convex spaces, K ¢ E a closed convex cone

and f:K » F a multivalued mapping (that is f:K - 2F), then the Generalized Multi-

valued Complementarity Problem, associated to f and K is:

find x, € K and y, € F such that,
(G.M.C.P.):

Yo € £(xg) n K* and < Xoy Yo > = 0.

A.3-Parametric Complementarity Problems.

Supposing defined a dual system of locally convex spaces <E, F.>, a closed
convex cone K ¢ E, a topological space T and a mapping f:K x T » F, the Generalized

Parametric Complementarity Problem is:

lfind the point-to-set mapping

Xo:T » E, such that, for every X, (t) = ¢,

(G.P.C.P.):
1f xo(t) € Xo(t) then, xg(t)e K, £(xo(t), t) € K*
[and <xo(t), £(xo(t), t) > =0
Remarks
n 8 n
1.2.6) IfE=F=R, T=R_,<x, y>= ) x.,y.; where x = (x,), y = (y.), K=R,
+ i=1 1" 1 1 1 2

Ae Mnxm(R)’ q, p € R" and f(x, t) = Ax + q + tp, then we obtain the Parametric
Complementarity Problem defined in the Elastoplastic Structures Theory [Al85],
[A186].

(1.2.7) The Parametric Complementarity Problem has close relations with the
Sensitivity Theory of nonlinear programming problems and in these cases is
interesting to study the existence of continuously or differentiable selections of
the solution mapping Xg,.

In finite dimensional spaces we distinguish another interesting parametric
complementarity problem. This problem was considered by Meister [A212].

Let D c R" be a set of the form, P = Rf X Ri X Q, where ) takes the form RE X Ri

for m = 2k and { is an arbitrary interval in R™ for k = O.

We remark that D is supposed to be with non-empty interior.
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Given a mapping f: D » R" and supposing, <x, y>= E X, ¥, we consider the
i=1
Special Parametric Complementarity Problem,

find (X0, Yo» Zo) € D such that,
(S.P.C.P.)¢
f(x0s Yo» 2o) = 0 and <xg5, yo> = 0

Certainly, we can define this problem in infinite dimensional spaces but its

study is more complicated.

A.4-Implicit Complementarity Problems.

The origin of the Implicit Complementarity Problems is the dynamic programming

approach of stochastic impulse and of continuous optimal control.

It is not without interest to know that there exist deep and interesting
relations between the Implicit Complementarity Problems and the Quasivariational
Inequalities Theory [Al18], [A19], [A20], [A21], [A22], [A37], [A222].

We consider a locally convex space E(T), a closed convex cone Kc E, an element
be E and two mappings A, M:E > E.

Given a bilinear functional <, > on E x E, the Implicit Complementarity Problem
is,

find x5 € E such that,
(I.C.P.): M(x5) — X5 € K, b = A(xy € K and
<A(xo) - b, x5 - M(xy > = 0.

If <E, P> is a dual system of locally convex spaces and K< E is a closed convex

cone, then given M:E * E and A:E * E two mappings and b€ F an arbitrary element,

the Generalized Implicit Complementarity Problem is,

find x5, € E such that,
(G.I.C.P.)¢[M(xy) - x5 € K, b = A(x,) e K*
and <A(xy) = b, x5 = M(%x5)> = 0
More general, we can consider the following multivalued implicit complementarity
problem.
Let <E, F>be a dual system of locally convex spaces and consider:
M:E + E, a point-to-point mapping,
f:E > F, a point-to-set mapping and
L:E > E, a cone-valued mapping, that is for every xe¢ E, L(x)c E is a closed
convex cone.

The Multivalued Implicit Complementarity Problem is,

find x5 € M(x,) + L(x,) and y € F
(M.I.C.P.):|such that, y € f(x,) N L(x,)* and
<y, Xo = M(x4)> = 0.



