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Preface

In the brief interval of years since the first appearance of this book,
gratifying strides have been made in mathematical education, for pupils
at all levels as well as for their teachers. It is now apparent that both
teachers in service and teachers in training quickly embraced the “new”
program with commendable professional spirit and even with enthusiasm.
Hence any “modern™ presentation of the basic concepts of mathematics
for teachers of elementary arithmetic need no longer “tread softly,” let
alone apologize for a reasonable degree of rigor and abstractness in its
treatment of the subject.

Thus in the present edition I have eliminated a few of the “practical
applications” of mathematics and moderately increased the accent on
theory and structure. Specifically, the discussion of sets (Chapter 1) now
includes a discussion of operations and mappings; the chapter on logic
now includes a discussion of truth tables; the chapter on Geometry has
been reorganized and expanded; the chapter on the integers now includes
some material on the theory of numbers and modular arithmetic; new
material on Equations and Inequalities has been added; and the treat-
ment of “permutations, combinations, and probability” has been
moderately extended.

It is hoped that these minor changes will enhance the usefulness of
the book, and that the slight deviation from the original sequence of
chapters will not discourage students from carrying on.

W. L. Scuaar
Boca Raton, Florida
January, 1965
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Preface to the First Edition

The role of mathematics in contemporary society is unique. Our society
is not only complex, it is apparently changing at an accelerated pace.
One cannot therefore predict with assurance either the mathematical
needs of today’s learner, or the mathematical ideas required by tomorrow’s
society. Hence the most that one can reasonably expect education to
contribute in this connection is an optimum concern with fundamental
mathematical ideas and methods of mathematical thinking, together
with a modicum of attention to mathematical information and specific
mathematical skills and techniques. One of the chief tools for obtaining
knowledge and arriving at conclusions is the deductive method, and,
although much of mathematics is discovered or invented inductively,
mathematics is still, par excellence, the science of deductive reasoning. It
is clear, therefore, that we need to understand mathematical methods
and the language of mathematics in order to apply them to the physical
and social sciences.

Since instruction in secondary school mathematics rests squarely upon
the foundations laid in elementary school arithmetic, it is obvious that
the elementary school teacher should have an adequate understanding
of elementary mathematics, including arithmetic, algebra, geometry,
and related fields. It is an acknowledged truism that one cannot teach
a subject effectively unless his knowledge and understanding go well
beyond the scope of that which he is expected to teach. It is my pur-
pose in this book, therefore, to supply some of the appropriate mathe-
matical backgrounds so desperately needed by elementary school teachers
of arithmetic. These basic backgrounds include, among other things,
the nature of number and of systems of enumeration, the logical struc-
ture of arithmetic, the number system of arithmetic and algebra, informal
and formal geometry, computation, measurement, trigonometry, func-
tional relations, and certain concepts of statistics and probability. That
this need is very real has been pointed out repeatedly. The effective

ix



x Preface to the First Edition

teacher of any discipline should live intimately with that discipline. He
should himself have far greater insight than he strives for in his students.
Suppose one were to ask an elementary school teacher, “Why does
2 +3 =3 4 2?7 Is this equation a definition? Is it an undeniable
fact? An arbitrary assumption? A remarkable coincidence? A fortu-
nate accident? An eternal verity? How many readers, at this point,
can answer correctly?

In short, teachers of arithmetic and junior high school mathematics
require more than a conventional course in methods of teaching arith-
metic. They need a content course in mathematics. Such a course should
not be a simple review or refresher course in seventh and eighth year
arithmetic, or a traditional course in algebra, geometry, trigonometry,
and analytics. Nor should it be an experience designed to achieve de-
sirable computational proficiency. On the contrary, this course should
strive to give some insight into the nature and structure of mathematics,
including not only arithmetic, but algebra and geometry as well.

As I write this preface, imminent changes in mathematics curricula,
from the college on down, suggest that sooner or later even the elementary
school will feel the impact of the “new look™ in mathematics. Although
the extent of these changes on the secondary level is not yet altogether
clear, the newer curricula will surely differ in approach and in emphasis.
Somewhat greater stress will be laid upon the abstract point of view,
with explicit attention to axiomatics and mathematical systems. Despite
the criticisms and dire predictions in some quarters that this change
cannot be made, it begins to appear that it is feasible, and is in fact
being done. One can scarcely question the thesis that the teacher, at all
events, should be reasonably familiar with the nature of modern mathe-
matics and its implications for education. To be sure, the term “modern
mathematics” will mean different things to different people. As the
term is used here it refers essentially to mathematical ideas which were
unknown (or not widely accepted) as recently as one hundred years ago.
Notable among such ideas are the logical foundations of mathematics,
abstract algebra, symbolic logic, and the contemporary theory of prob-
ability and statistical inference. More specifically, this new approach
wil. deal with the historical development of systems of numeration, the
evolution of the number concept, the role of postulates and definitions
in mathematics, generalization, abstraction, and formalism, the nature
of mathematical proof, intuitive set theory, symbols, relations, and
operations, the logical basis of the number system, measurement,
approximations, variables and functions, statistical concepts.

It is my express purpose, in the following pages, to capture the spirit
of contemporary mathematics and to integrate it with those aspects of



Preface to the First Edition xi

“classical” mathematics which are pertinent to the elementary school.
I sincerely hope that the day is not too far distant when the essence of
mathematical thinking, the nature of mathematical relations, the sig-
nificance of mathematical systems and models, and the relation to the
rational numbers to the natural numbers, for example, will be as familiar
to future elementary teachers as “concrete numbers,” “borrowing in
subtraction,” and the “partition idea of division” have been to an earlier
generation of teachers. In the interests of a more enlightened populace
living in an increasingly complex culture predicated upon faith in
science and technology, may that day soon arrive.

W. L. ScHaar

Flushing, New York
April, 1959



“Mathematics is the science
that uses easy words for
hard ideas.”

—Edward Kasner
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Modern Mathematics

The originality of mathematics consists
in the fact that in mathematical science
connections between things are exhib-
ited which, apart from the agency of
human reason, are extremely unobvious.

—Alfred North Whitehead

THE AXIOMATIC POINT OF VIEW

Historical Retrospect

Popular opinion has it that mathematics is a precise science, that its
truths are absolute, and that the facts of mathematics are final and
unequivocal. How often do we hear the phrase “mathematically
certain,” or the remark, “just as surely as two and two are four!”
Indeed, until comparatively recent times, this general attitude was prev-
alent among mathematicians themselves. Yet nothing could be more
misleading concerning the nature of mathematical knowledge. It should
be said at once that we are speaking here about “pure” mathematics
rather than “applied” mathematics, although the distinction between
the two is not always easily made.

Consider for a moment the older notions of the nature of mathematical
knowledge. The word “mathematics” is derived from an ancient Greek
word, manthanein, which meant “to learn.” How did the mathematicians
of an earlier day come by their knowledge? One of the oldest viewpoints
was that of the classic Greek mathematicians and philosophers, who



