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Introduction

The purpose of this work is to show how the recent work of Waldspurger ([W-1]
and [W-2]) can be fit into a general theory of using the oscillator representation
to (1) construct certain L - functions of automorphic representations
associated to classical groups and (2) give exact formulae for the special
values of these L—functions at integer and half integer points. We are
presenting a point of view that is the outgrowth of our results in [R-2] and
[R-3]. We note that this work was initiated in an attempt to relate the results

of [R-3] to Waldspurger's results in [W-2]. We describe the general idea.

Indeed we start with a dual reductive pair, (G,G') and the associated
oscillator representation of G x G on a Schwartz space S . MWith a cusp form f
on G'(R) and a general o -kernel (¢ a Schwartz function), we can construct
the 1ifting <e (x,y)lf(y)>GI = z¢,f(x) which becomes an automorphic form on
G() . The general problem studied by many authors is to characterize the space
{2 ,f|¢ e€S,femn (S, a Schwartz space, 1 an irreducible cuspidal
representation of G'(A)). For instance we want (i) to show this space (if
nonzero) is irreducible, (ii) to characterize the cuspidal properties of this
space, and (iii) to determine when the space is nonzero and which specific auto-
morphic representation of G(A) we have. These questions are answered in specific
cases in [W-1] and [Ps] for the dual pairs (§E;,0(2,1)) and (§;1,0(3,2)) . We
note from the results of [R-2] that it is easy to use the local Howe duality
conjecture and multiplicity one for local oscillator representations to deduce
(i) above. Moreover, question (ii) can be answered to some extent also from
the results of [R-2]. Question (iii) is more difficult and has so far not
yielded to a general solution. What is striking about the results in [W-1] is
that one requires both global and Tocal data to get a nonvanishing condition for
the 1ift. In particular in [W-1] one can associate a certain L - function to an
automorphic representation of g;&(A) given by the Shimura 1ift S*(n) defined
in [G-Ps-1]. Then the global data for the 1ifting of n (defined above) to be
nonvanishing is that L(S*(n), %) # 0 ; the local data is that the local

components of nv have a prescribed Whittaker model for all primes v . It is



v

remarkable that these two pieces of data are precisely the ones which fit into

our general picture.

Our program in answering (iii) above is to give an effective way to compute

the Petersson inner product

(1) {2

<£¢,f ¢,f>G(A) :

Indeed in [R-3] we determined (in special cases) a formula for this inner product
in terms of the special values of a certain L - function associated to the
automorphic representation defined by 1m . What is directly evident from this
formula is the two pieces of data discussed above. Namely we have (i) certain
information about the special value of a global L - tunction, i.e., the global
data and (ii) at a finite number of places the occurrence of a local component

n in a local oscillator representation, i.e., the existence of certain Whittaker
v

models for m locally.
v

Our purpose here is to describe how it is possible to generalize the results
of [R-3] to include part of the work of [W-1] and [W-2] (see [K-Z] for
interpretation of results in [W-2]) and in the process develop the theory

discussed in the first paragraph.

Indeed when we unwind the integration in <z¢ f|1¢ f> we get a formula of

the form

®_ ]
(2) <« @ f| fe¢(x,z)e¢(x,z )dX)(G'xG')(A) .

The main problem here is to interpret the second term above, First we take the
tensor product (S ®S) = § and consider the associated oscillator representation
of (G x G,G' x G') . However it is possible to apply Kudla's idea of a see-saw
dual pair [Ku-2]; that is, there exists another dual pair (AG,G") so that

bg = {(g,9)|g € G} and so that (AG,G") acts on S . Moreover we have the
fundamental relationship

G x6G G"
(3)




where | denotes inclusion. Thus the second term in (2) above is essentially the
1ift of the identity representation of AG to the group G" where we use the

o-kernel function ¢ (x,(z,z')) on A x G" (restricted to A_ x (G' x G')).
¢® ¢ G G

This set up leads immediately to the Siegel-Weil formula given in [We-2].
That is, the second term in (2) becomes a particular Eisenstein series

(¢(z,2")) on G" (restricted to G' x G') . Thus (2) equals

(4) e flE(s,(, ))>G, < G'(R)

However, recalling the method of formation of Eisenstein series it is possible to
find an analytic family of Eisenstein series I!s(¢, )} (formed relative to a
certain maximal parabolic subgroup of G") so that (4) is just the value at

s = 0 of the meromorphic function

(5) S~ <f® ?|JES(¢,( D DER

It is with this family of meromorphic functions that we construct certain L-
functions associated to the automorphic representation n containing f . In
particular in this paper we consider the dual pair (Spl,O(O)) and show
(Theorem 6.1) that (5) can be written as a product of two terms. The first term
is the product of a certain Abelian zeta function times the "restricted" L-
function of either (i) (if Q 1is even dimensional) the “symmetric square" of a
certain GLZ(M) representation associated to @ or (ii) (if Q is odd
dimensional) the Shimura 1ift of 1 1in the sense of [G-Ps-1]. The second term is
a finite Euler product in which each local factor is a rational function such that
the denominator divides a power of the local factors associated to the symmetric
square or Shimura 1ift mentioned above. More generally (i.e. for many dual
pairs) the author in joint work with Piatetski-Shapiro can show that (5) splits
into a product of 2 terms similar to the terms in the case discussed above. The
global term will, in general, be an Abelian zeta function times the restricted L-

function of the automorphic representation n (in the sense of Langlands in [B]).

In any case, it is the first term in the formula for (5) that gives the



vi

"global" contribution to (2) (when we evaluate (5) at s = 0) . That is, we get

the special value of the associated L-function! On the other hand, when we

evaluate the associated local factors (in the second term mentioned above) we get

a term which defines a G' x G; invariant bilinear form on the space
v
A(S )® A(m )
v v

(A(Sv) and A(nv) , the space of smooth matrix coefficients of the G;

representation on S and nm respectively). Then we know that (in the special
v v

case (Spl,O(Q))) the nonvanishing of this form is equivalent to the occurrence

of mn in S (Proposition 5.1, Proposition 6.1 and Corollary 1 to Proposition
v v

6.1). This is the local data referred to above (indeed the equivalence of this
fact to the occurrence of certain Whittaker models of nv is discussed in
Corollary 1 to Proposition 6.1).

Thus we see that the nonvanishing of (2) is equivalent to (i) the
nonvanishing of the associated L- function at a special value ("global data") and
(ii) the occurrence of Hv in Sv ("1ocal data") for finitely many v

(Theorem 6.3).

We emphasize here that we have demonstrated the above results for the dual
pair (Spl,O(O)) where 0(Q) 1is a rank one group. The obstacles to extending to
more general cases appear to be not totally of a technical nature. Indeed we

emphasize here that we require the Siegel-Weil formula in a range of cases

hitherto not covered by the classical results (see [We-2]). Indeed the problem is
to give meaning to the integral
(6) 8 (x,y)dy
G'(Q)\ G'(A)
even though in general it may not be convergent. Indeed we note first that in the
case when G'(Q)\ G'(R) 1is compact (G' 1is "anisotropic") then the above
integral is convergent. In fact we show (for the case G' = 0(Q) and G = Sp
n
with dim Q > n) that we can construct an analytic family of Eisenstein series
*
{E (¢,u)} similar to the family defining (5) so that the integral in (6) equals

* *
E (¢,0) (here we mean the continuation of the series defining E (4,y))

(Theorem 4.1).
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We next examine the case when G' is not anisotropic. We plan to relate
this to a "smaller" anisotropic case. Indeed it is first a matter of
appropriately defining (6). For this we use a trick similar to the Maas-Selberg
inner product formulae. Namely we first consider an analytic family of Eisenstein

series RS on G' so that residue R =1 (the constant functions on
s
s =%

G'(@)\ G'(R)). Then we consider the truncation operator AT applied to RS .

In particular this gives a convergent integral

(7) / 6 (X,Y)ATRS()’)d)’ .
a'(Q)\g'(n) *

We compute (7) as a function of T and s (again in special cases discussed in
Theorem 2.1 and Corollary 1 to Theorem 2.1). The upshot of the calculation of (7)
is that we get "asymptotiga]]y" in T a sum of 2 terms; the first term does not

. involve T and represents an Eisenstein series on G(A) (which is the "T1ift" of
R ). The second term is a finite sum with simple exponentials (involving T and
s) times a fixed Eisenstein series on G(A) (coming from the anisotropic
Siegel-Weil formula case). In any event it is this formula that allows us to

compute (2) when we cannot use the classical Siegel-Weil formula
(Proposition 3.1).

At this point, we return to the importance of computing (1) in terms of the
global and local data as mentioned above. Indeed if G' is "large" compared to
G, the global data is always nonvanishing (that is, the restricted L - function
is nonvanishing at a large special value). Thus all we need for the nonvanishing
of (1) is the local data. On the other hand, if the ranks of G and G' are
close, then the "Waldspurger" phenomenon takes place. Namely the nonvanishing of
the L -function at a point in the critical strip becomes an additional criterion
for the nonvanishing of the 1ift of 1 (defined by the oscillator
representation). We contrast this point to lifting from G' to G given by
Langlands functoriality. In such an instance we would always get a possible
automorphic representation n' of G . However the arithmetic nature of the
1ifting defined by the o - kernel method says simply that we cannot expect to

always realize the Langlands 1ifting by the o -1ifting method. Moreover we note
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here that it is reasonable to expect that the ¢-1ifting actually satisfies

Langlands functoriality when G and G' are comparable (see [R-1] for this).
We now describe the organization of this paper.
In §0 we give the notation and preliminaries for this paper.

In §1 we consider a special family RS of Eisenstein series on 0(Q) (when

Q 1is rank one) which has the property that res R =1, Indeed to study
s=m/2 -1 s
the meromorphic continuation of R we note that it suffices to compute the
s

constant term of R . For this, using the theory of dual pairs, we show the
constant term of RS is equal to the constant term on a family R: of Eisenstein
series on Sp1 (Theorem 1.1). Thus we reduce the calculation of the constant term
of RS to that of R: , which is relatively straightforward. This appears to be
another instance where the correspondence given by the oscillator representation
reduces a problem of calculation on a big group to a simple calculation on a

smaller group!

In §2 we consider the Siegel-Weil formula discussed above. Namely we compute
(7). (Theorem 2.1 and Corollary 1 to Theorem 2.1). We compute an asymptotic
formula for (7). The main technical point is given in Lemma 2.1 - 2.3. We show
that thé appropriate remainder term in (7) goes to zero as T s+ « (T , the

truncation variable defined above). We emphasize here that this formila
*k

essentially says that the 1ift of RS is another family RS of Eisenstein

series on Spn (Theorem 2.2).

7" T
In §§°ﬁe compute the inner product <j le A (RS)> using the data from §2

o ¢,f "¢,f
(Lemma 3.1). The asymptotic formula in Theorem 2.1 shows that this inner product

equals a sum of two terms:

+ {a linear combination of simple
SpnxSpn { P

- *
(8) e flE (s ,(, )
exponentials (in T and s) times <z |z >}
¢,f o,f
*
where ¢ 8 Schwartz function related to ¢ and <g | > 1dis an inner

' 6.f 3.f
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product associated to a lifting of f to a smaller dimensional 0(0') . Thus
assuming knowledge of the lower rank cases it suffices to examine the first term
of the sum above. The analytic family E . of Eisenstein series is constructed
from data relative to a maximal parabolic subgroup of Spn ; this parabolic
subgroup has Levi factor of the form Spn-i x Gzi , and E . is formed from the
tensor product of a Siegel-Weil integral (relative to a dual pair of form

0(Q') x Spn—i) and a one dimensional character on Gli . It is precisely at this
point that we apply our version of the Siegel-Weil formula in the anisotropic case
(8§4). This means that we look at a new family I::,u of Eisenstein series on

Sp (formed relative to a codimension 2 parabolic subgroup of Sp ) and examine
n n

the integral

(9) o FIE. ((,)).
S,y

Then in Lemma 3.2 we show that II*’ = IIS . The problem is thus to evaluate
(9). It is at this juncture that we restrict to the n =1 case. Indeed we use
the orbit decomposition of the affine symmetric triple (BZ,sz,Splepl) to
compute (9). This jdea comes from the methods employed in [R-3]. Then we compute
(9) in Theorem 3.3 to get a "mixed" integral over Spl(A) of the product of a
matrix coefficient (<nQ(Gl)s|s>) of a lower dimensional oscillator
representation times a Rankin integral involving (f*Gl)Q Fe (F( ,s,n) * Gl}
where IF is an Eisenstein series on Spl(A) with {F( ,s,u) * Gl} , the
translation by Gl in Spl(A) of this series in the bigger group Sp2 (i.e.

Sp1 > sz via x + (x,1)) . Indeed we note that if G1 = e , then we get the
classical Rankin integral of f® f ® F( ,s,u) . In any case the problem of
computing (9) has been reduced to dealing with a classical Eisenstein series on
SpIUA) . Now the fundamental trick in evaluating (1) is to realize that

res val (9) = val res (9) and that

~N 3

m
s = E -1 u=0 p=0 s-py= -1

res {(F( ,5,u) * Gl} =9 (G ), a certain exponential function on Spl(A)

1
s-p=m/2-1 ¥
{which is independent of the automorphic form variable of TF( ,s,u)) . Thus we



deduce in Theorem 3.5 that (1) equals the convolution of the matrix coefficient

T<f * Gllf> with the function o (Gl)<n (Gl)e|a> . The technical aspects in the
I u

Q
proof of Theorem 3.5 require much care. We need certain analytic continuations

and subsequent delicate bounds (in order to compute the integrals in Theorem 3.3).
These steps are given in Lemma 3.4 and the Lemma in the Appendix. Then finally in

Corollary 1 to Theorem 3.5 we reduce the calculation of (9) to the computation of

an Euler product given by the right hand side of (3-39).

In §5 we start the calculation of (3-39). We begin with an arbitrary local
factor of (3-39) given by (5-3). In Proposition 5.1 we determine the analyticity
"properties of (5-3) and show that we can take val (val (5-3)) . We show for
‘ p=0 s-p= E‘-l
finite primes that (5-3) is a rational function in the variables q-S and q'u
(Corollary 1 to Proposition 5.1) admitting a prescribed common denominator
(independent of the input data defining (5-3)) which depends on the local
component nv in 1m . On the other hand we show in Corollary 2 to
Proposition 5.1 that val (val (5-3)) defines a Sp1 x Sp1 invariant bilinear
. p=0 s-p= g'-l
form on A(nv) ® A(S) . The bilinear form is the local integral over Spl(ov) of
the product of a matrix coefficient of nv times a matrix coefficient of the
local oscillator representation. This integral appears already in [R-3]. Next we
consider the calculation of (5-3) in the spherical case (i.e. nv , a class one
representation of Spl(Dv)) . We compute this local factor in Proposition 5.2.
We interpret this local factor in terms of the L —functions defined by Langlands
for spherical representations (see (5-29), (5-30) and (5-31)). In Remarks 5.3 and
5.4 we consider the restricted Euler product of the spherical factors and
interpret the corresponding global L-function as either (i) a symmetric square
of a representation of GL2 (associated to 1) if dim Q is even, or (ii) a
Shimura 1ift of n if dim Q is odd. We also include a discussion of the
. general holomorphicity properties of such L -functions. Finally in
a Progogition 5.3 we summarize the calculation of (1) in terms of the product of the

special value of the L-functions given above times the local factors (given in

Corollary 2 to Proposition 5.1).
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In §6 we collect together the results of &§3 to §5. Indeed in Theorem 6.1 we

compute res (9) (as a function of ) in terms of the L -functions and
s-p=m/2-1
local factors given in §5. Then in Theorem 6.2 we deduce the identity between the

inner product in (1) and the product of the special value of the restricted L -
function (discussed above) times a finite Euler product of local terms defining
the bilinear form on A(nv) @® A(Sv) given above. It is at this point that we
show in Proposition 6.1 that the nondegeneracy of such a local form is equivalent
to the occurrence of nv in Sv (as an Sp1 module). Moreover we show in

Corollary 1 to Proposition 6.1 which possible noncuspidal representations occur in

Sv ; for supercuspidal and discrete series representations we give a criterion
for the occurrence of such representations in Sv in terms of the existence of
certain Whittaker models of these representations. Finally in Theorem 6.3 we give
the criterion for the nonvanishing of (1) in terms of the global and local data

mentioned earlier!

In §4 we discuss the Siegel-Weil formula in the anisotropic case. We consider
first the question of what extent the valuation of an Eisenstein series E( ,s)

on Sp (B) at a given value s =s_ is a Hecke intertwining map from the induced
n

Sp_ )

representation IndP r(‘IA) (ldetlsw(det)) to the space @ of slowly measuring
n

autormorphic forms on Sp (R) . In particular this leads to a certain filtration
n
on a subspace ]I* of @ determined by taking the various terms in a Taylor
expansion of E( ,s) at s = s0 . Then assuming that the X types admit
v

multiplicity one properties in a local induced representation

Sp (Q) S
X =1ind V(1 | "l )) it is possible to define a nonzero Hecke
S P (Q,) E—
intertwining map from a Hecke stable and irreducible subspace Z & X to a
S S
0 0

certain quotient a/n* .

Then we review the theory of Tamagawa measures and the computation of the
nondegenerate Fourier coefficient of a special Eisenstein constructed from Schwartz
functions (see (4-1)). The method of proof of the Siegel-Weil formula in the

anisotropic case is to compare Fourier coefficients of the Siegel-Weil integral
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with the special Eisenstein series. Using the classical calculations of Siegel we
determine in Lemma 4.1 the local unramified factors of a nondegenerate Fourier
coefficient of the Eisenstein series. In Proposition 4.1 we show that each
nondegenerate Fourier coefficient of the above Eisenstein series is analytic at

u =0 (this specified value of y 1is adapted to the Siegel-Weil formula).
Moreover, we show that if Y is not represented by the form Q 1in question, then
such type of Fourier coefficient vanishes at =0 . In Lemma 4.2 we prove a
uniqueness principle about distributions on S(M (A)) which are O0(Q)(R) x U (A)
quasi invariant (explained in text). From this 32 deduce in Proposition 4.2 t:at
the nondegenerate Fourier coefficients of the Siegel-Weil integral and the
particular Eisenstein series (at yu = 0) are proportional (independent also of the
particular symmetric matrix X determining the Fourier coefficient). Finally in
Theorem 4.1 we prove the Siegel-Weil formula for the case m >n (m even or if

n =1 then all m) with Q anisotropic. We assume in the proof that the
Eisenstein series in question is analytic at y =0 . The remainder of this
section is devoted to proving this point (Progosition 4.3). The key ideas in the
proof of Theorem 4.1 and Proposition 4.3 are (i) the use of singular automorphic
forms (a la Howe) and (ii) the construction of the Hecke intertwining maps
discussed above. In the Appendix to &4 we prove the commutativity of a certain
Hecke algebra; this proves that IS is a multiplicity free Kv module. The
Siegel-Weil formula is valid for chwartz functions ¢ which are K-finite. We
note that in the case n =1, Theorem 4.1 is sharper (namely we show Siegel-Weil
is true for all Schwartz functions ¢). This point is necessary for the

applications in this paper!

At this point we would Tike to thank Professor Piatetski-Shapiro for several
discussions that crystallized our point of view on L-functions in the preparation
of this manuscript. Also we thank Professor Steve Kudla. He helped correct errors
in Chapter 4 of an earlier version of this manuscript. In fact as an outgrowth

of discussions with Professor Kudla, the Siegel-Weil formula has now been proved
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for the general anisotropic case (Kudla, S. and Rallis, S., "On the Weil-Siegel

Formula, " preprint (1986)).

For technical assistance in the typing and preparation of this manuscript, I
thank Dodie Shapiro and Terry England.
I acknowledge here partial support from NSF grant DMS - 8401947.
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CHAPTER ZERO

Notation and Preliminaries

(1)

Let k be a local field of characteristic 0. We fix a nontrivial additive
character t on k. Let < >k be the usual Hilbert symbol on k. Let dx
be a Haar measure on k which is self dual relative to t . We let | |k be
an absolute value of k.

If k s a nonarchimedean field, we let @k = ring of integers of k,

“k = the maximal ideal in 6 ¢’ and q = the cardinality of @k/nk.

(17)

Let K be a number field (i.e., finite degree extension of Q, the rational
numbers). Let MK be the corresponding adelic group. Then >mbed K as a
discrete subring in MK . Let Kv be the completion of K relative to a prime
v in K. Let +t be a nontrivial character on MK which equals 1 on K; then
there exist compatible characters rv on Kv (for all primes v in K) such
that (X)) =n1 rv(Xv). Let dX be the measure (Tamagawa measure) on AK

v
such that the group AK/K is self dual relative to t and MK/K has mass 1.
When the context is clear, we drop K in AK and just use A for MK.

(111)

Let Q be a nondegenerate quadratic form on Km. Let 0V be the corres-
ponding local versions on KT. If Ov is a totally split form which is the
direct sum of r hyperbolic planes, then we let Ov = Hr'

Let 0(Q) be the orthogonal group of Q. Then we can form the corresponding
adelic group O0(Q)(A) and the corresponding local orthogonal groups O(OV) of

Qv at Kv. Let 0(Q)(K) = the K rational points in 0(Q) and embed 0(Q)(K)
into O0(Q)(A) in the standard way. Choose a Tamagawa measure on the quotient
of 0(Q)(K)\ 0(Q)(m) as given in [Ar].

Similarly let A be a nondegenerate alternating form on Kzn. Let Spn be
the corresponding symplectic group and Spn(m), Spn(Kv) the associated adelic
and local objects. Let Spn(K) = the K rational points in Spn and embed

Sp (K) into Sp (A) again in the standard fashion and choose a Tamagawa measure
n n



on the quotient Sp (K)\ Sp (A) as given in [Ar].
n n
Moreover we let gpn(M) = the two fold cover of Spn(m) ; we know that

Spn(K) embeds into §pn(m) and that we can choose an gpn(M) invariant measure

on the quotient Spn(K)\\gpn(m) .

Where it is clear from the context we shall omit the ~ over Sp (in
n

referring to the two fold cover).
(1v)

We consider the category of smooth representations for the local and global
objects in question. That is, nv is smooth locally for Gv (a Tocal group)
if (1) at the Archimedean primes, nv is a differentiable module for Gv,
i.e., (IIV)°° = ¢" vectors in m, =, and (2) at the finite non-Archimedean

primes, m s a smooth module for G in the sense of [Cs]. Then we consider
v v

also the category of admissible modules as given in [Cs].

In the non-Archimedean case, we use the notion of Jacquet functor given in
[Cs]. That is, if N CG 1is any closed subgroup, and if nm is any smooth &
v v v v

module, we have a functor from m to (n ) = 1 /m (N ), where n (N ) = {all
v v NV vV Vv v vV v
linear combinations of the form x -1 (n)x as x varies in ©m and n
v v

varies in NV}. Moreover we consider the category of admissible qm modules as
given in [B]. In this context, we note the well known relation in [R] hetween

unitary irreducible modules of QA and admissible irreducible modules of GM.

We also use the notion of automorphic irreducible representations of ﬁA as

given in [B].

(v)
If GA is a global group, then we denote the space of cusp forms on
2
GK\ GA by Lcusp(qm). We note (by our convention) that if GK'\GA is compact,

2 2
then L (G,) = {all functions f 1 constants}. We know that L (G,) is
cusp A cusp A

discretely decomposable as a GA module, and each unitary irreducible represen-

2
tation occurring in Lcusp(GA) has a finite multiplicity. We denote



