Manuel Hermenegildo
Daniel Cabeza (Eds.)

Practical Aspects
of Declarative
Languages

7th International Symposium, PADL 2005
Long Beach, CA, USA, January 2005
Proceedings

LNCS 3350

@ Springer



Manuel Hermenegildo Daniel Cabeza (Eds.)

Practical Aspects
of Declarative
Languages

7th International Symposium, PADL 2005
Long Beach, CA, USA, January 10-11, 2005
Proceedings

@ Springer



Volume Editors

Manuel Hermenegildo

University of New Mexico, Department of Computer Science
MSC 01 1130, Albuquerque, NM 87131, USA

E-mail: herme @unm.edu

and

Technical University of Madrid, Department of Computer Science
28660 Boadilla del Monte, Madrid, Spain

E-mail: herme @fi.upm.es

Daniel Cabeza
Technical University of Madrid, Department of Computer Science

28660 Boadilla del Monte, Madrid, Spain
E-mail: dcabeza@fi.upm.es

Library of Congress Control Number: 2004117186

CR Subject Classification (1998): D.3, D.1, E3,D.2

ISSN 0302-9743
ISBN 3-540-24362-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.
Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11377474 06/3142 543210



Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3350



Preface

The International Symposium on Practical Aspects of Declarative Languages
(PADL) is a forum for researchers and practioners to present original work
emphasizing novel applications and implementation techniques for all forms of
declarative concepts, including functional, logic, constraints, etc. Declarative lan-
guages build on sound theoretical foundations to provide attractive frameworks
for application development. These languages have been successfully applied to
a wide array of different real-world situations, including database management,
active networks, software engineering, decision support systems, or music com-
position; whereas new developments in theory and implementation have opened
up new application areas. Inversely, applications often drive the progress in the
theory and implementation of declarative systems, as well as benefit from this
progress.

The 7th PADL Symposium was held in Long Beach, California on January
10-11, 2005, and was co-located with ACM’s Principles of Programming Lan-
guages (POPL). From 36 submitted papers, the Program Committee selected 17
papers for presentation at the symposium, based upon at least three reviews for
each paper, provided from Program Committee members and additional referees.

Two invited talks were presented at the conference: one by Norman Ram-
sey (Harvard University) entitled “Building the World from First Principles:
Declarative Machine Descriptions and Compiler Construction”; and a second by
Saumya Debray (University of Arizona) entitled “Code Compression.”

Following what has become a tradition in PADL symposia, the Program
Committee selected one paper to receive the “Most Practical Paper” award.
This year the paper judged the best in terms of practicality, originality, and
clarity was “A Provably Correct Compiler for Efficient Model Checking of Mobile
Processes,” by Ping Yang, Yifei Dong, C.R. Ramakrishnan, and Scott A. Smolka.
This paper presents an optimizing compiler for the pi-calculus that improves the
efficiency of model-checking specifications in a logic-programming-based model
checker.

The PADL symposium series is sponsored in part by the Association for Logic
Programming (http://www.cs.kuleuven.ac.be/"dtai/projects/ALP/) and
COMPULOG Americas (http://www.cs.nmsu.edu/ complog/). Thanks are
also due to the University of Texas at Dallas for its support. Finally, we want to
thank the authors who submitted papers to PADL 2005 and all who participated
in the conference.

November 2004 Manuel Hermenegildo
Daniel Cabeza



VI

Program Chairs
Manuel Hermenegildo

Daniel Cabeza

Program Committee

Kenichi Asai
Manuel Carro

Bart Demoen
Robert Findler
John Gallagher
Hai-Feng Guo
Gopal Gupta
Chris Hankin
Joxan Jaffar

Alan Mycroft
Gopalan Nadathur
Lee Naish

Simon Peyton-Jones
John Reppy
Morten Rhiger
Francesca Rossi
Vitor Santos-Costa
Terrance Swift
David S. Warren

Referees

University of New Mexico, USA and
Technical University of Madrid, Spain
Technical University of Madrid, Spain

Ochanomizu University, Japan
Technical University of Madrid, Spain
K.U.Leuven, Belgium

University of Chicago, USA

Roskilde University, Denmark
University of Nebraska at Omaha, USA
U. of Texas at Dallas, USA (General Chair)
Imperial College London, UK

National U. of Singapore, Singapore
Cambridge University, UK

U. of Minnesota, USA

U. of Melbourne, Australia

Microsoft Research, USA

University of Chicago, USA

Roskilde University, Denmark
University of Padova, Italy

U. Federal do Rio de Janeiro, Brazil
S.U. of New York at Stony Brook, USA
S.U. of New York at Stony Brook, USA

Maurice Bruynooghe
Ins de Castro Dutra
Chiyan Chen
Henning Christiansen
Gregory Cooper
Yifei Dong

Mrio Florido

David Greaves

ngel Herranz

Bharat Jayaraman
Siau-Cheng Khoo

Ricardo Lopes
Noelia Maya

Dale Miller
Rudradeb Mitra
Andrew Moss
Pablo Nogueira
Michael O’Donnell
Bernard Pope
Ricardo Rocha
Mads Rosendahl
Abhik Roychoudhury

Tom Schrijvers
David Scott
Mark Shinwell
Leon Sterling
Tom Stuart
Peter Stuckey
Eric Van Wyk
Kristen Brent Venable
Joost Vennekens
Razvan Voicu
Hongwei Xi



Lecture Notes in Computer Science

For information about Vols. 1-3257

please contact your bookseller or Springer

Vol. 3385: R. Cousot (Ed.), Verification, Model Checking,
and Abstract Interpretation. XII, 483 pages. 2004.

Vol. 3382: J. Odell, P. Giorgini, J.P. Miiller (Eds.), Agent-
Oriented Software Engineering V. X, 239 pages. 2004.

Vol. 3381: M. Bielikov4, B. Charon-Bost, O. Sykora, P. Vo-
jta8 (Eds.), SOFSEM 2005: Theory and Practice of Com-
puter Science. XV, 428 pages. 2004.

Vol. 3363: T. Eiter, L. Libkin (Eds.), Database Theory -
ICDT 2005. XI, 413 pages. 2004.

Vol. 3358: J. Cao, L.T. Yang, M. Guo, F. Lau (Eds.), Par-
allel and Distributed Processing and Applications. XXIV,
1058 pages. 2004.

Vol. 3356: G. Das, V.P. Gulati (Eds.), Intelligent Informa-
tion Technology. XII, 428 pages. 2004.

Vol. 3353: J. Hromkovi&, M. Nagl, B. Westfechtel (Eds.),
Graph-Theoretic Concepts in Computer Science. XI, 404
pages. 2004.

Vol. 3350: M. Hermenegildo, D. Cabeza (Eds.), Practical
Aspects of Declarative Languages. VIII, 269 pages. 2004.

Vol. 3348: A. Canteaut, K. Viswanathan (Eds.), Progress in
Cryptology - INDOCRYPT 2004. XIV, 431 pages. 2004.

Vol. 3347: R.K. Ghosh, H. Mohanty (Eds.), Distributed
Computing and Internet Technology. XX, 472 pages.
2004.

Vol. 3344: J. Malenfant, B.M. @stvold (Eds.), Object-
Oriented Technology. ECOOP 2004 Workshop Reader.
VI, 215 pages. 2004.

Vol. 3341: R. Fleischer, G. Trippen (Eds.), Algorithms and
Computation. XVII, 935 pages. 2004.

Vol. 3340: C.S. Calude, E. Calude, M.J. Dinneen (Eds.),
Developments in Language Theory. X1, 431 pages. 2004.

Vol. 3339: G.I. Webb, X. Yu (Eds.), AI 2004: Advances in
Artificial Intelligence. XXII, 1272 pages. 2004. (Subseries
LNAID).

Vol. 3338: S.Z. Li, J. Lai, T. Tan, G. Feng, Y. Wang (Eds.),
Advances in Biometric Person Authentication. X VIII, 699
pages. 2004.

Vol. 3337: J.M. Barreiro, F. Martin-Sanchez, V. Maojo, F.
Sanz (Eds.), Biological and Medical Data Analysis. XI,
508 pages. 2004.

Vol. 3336: D. Karagiannis, U. Reimer (Eds.), Practical
Aspects of Knowledge Management. X, 523 pages. 2004.
(Subseries LNAI).

Vol. 3334: Z. Chen, H. Chen, Q. Miao, Y. Fu, E. Fox, E.-p.
Lim (Eds.), Digital Libraries: International Collaboration
and Cross-Fertilization. XX, 690 pages. 2004.

Vol. 3333: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part ITI. XXXV, 785 pages. 2004.

Vol. 3332: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part II. XXX VI, 1051 pages. 2004.

Vol. 3331: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part I. XXXVI, 667 pages. 2004.

Vol. 3329: P.J. Lee (Ed.), Advances in Cryptology - ASI-
ACRYPT 2004. XVI, 546 pages. 2004.

Vol. 3328: K. Lodaya, M. Mahajan (Eds.), FSTTCS 2004:
Foundations of Software Technology and Theoretical
Computer Science. X VI, 532 pages. 2004.

Vol. 3326: A. Sen, N. Das, S.K. Das, B.P. Sinha (Eds.),
Distributed Computing - IWDC 2004. XIX, 546 pages.
2004.

Vol. 3323: G. Antoniou, H. Boley (Eds.), Rules and Rule
Markup Languages for the Semantic Web. X, 215 pages.
2004.

Vol. 3322: R. Klette, J. Zunié¢ (Eds.), Combinatorial Image
Analysis. XII, 760 pages. 2004.

Vol. 3321: M.J. Maher (Ed.), Advances in Computer Sci-
ence - ASIAN 2004. XII, 510 pages. 2004.

Vol. 3320: K.-M. Liew, H. Shen, S. See, W. Cai (Eds.), Par-
allel and Distributed Computing: Applications and Tech-
nologies. XXIV, 891 pages. 2004.

Vol. 3316: N.R. Pal, N.K. Kasabov, R.K. Mudi, S. Pal,
S.K. Parui (Eds.), Neural Information Processing. XXX,
1368 pages. 2004.

Vol. 3315: C. Lemaitre, C.A. Reyes, J.A. Gonzélez (Eds.),
Advances in Artificial Intelligence — IBERAMIA 2004.
XX, 987 pages. 2004. (Subseries LNAI).

Vol. 3314: J. Zhang, J.-H. He, Y. Fu (Eds.), Computational
and Information Science. XXIV, 1259 pages. 2004.

Vol. 3312: A.J. Hu, A.K. Martin (Eds.), Formal Methods
in Computer-Aided Design. XI, 445 pages. 2004.

Vol. 3311: V. Roca, F. Rousseau (Eds.), Interactive Mul-
timedia and Next Generation Networks. XIII, 287 pages.
2004.

Vol. 3309: C.-H. Chi, K.-Y. Lam (Eds.), Content Comput-
ing. XII, 510 pages. 2004.

Vol. 3308: J. Davies, W. Schulte, M. Bamnett (Eds.), For-
mal Methods and Software Engineering. XIII, 500 pages.
2004.

Vol. 3307: C. Bussler, S.-k. Hong, W. Jun, R. Kaschek,
D.. Kinshuk, S. Krishnaswamy, S.W. Loke, D. Oberle, D.
Richards, A. Sharma, Y. Sure, B. Thalheim (Eds.), Web
Information Systems — WISE 2004 Workshops. XV, 277
pages. 2004.

Vol. 3306: X. Zhou, S. Su, M.P. Papazoglou, M.E. Or-
lowska, K.G. Jeffery (Eds.), Web Information Systems —
WISE 2004. X VII, 745 pages. 2004.



Vol. 3305: P.M.A. Sloot, B. Chopard, A.G. Hoekstra
(Eds.), Cellular Automata. XV, 883 pages. 2004.

Vol. 3303: J.A. Lépez, E. Benfenati, W. Dubitzky (Eds.),
Knowledge Exploration in Life Science Informatics. X,
249 pages. 2004. (Subseries LNAI).

Vol. 3302: W.-N. Chin (Ed.), Programming Languages and
Systems. XIII, 453 pages. 2004.

Vol. 3300: L. Bertossi, A. Hunter, T. Schaub (Eds.), In-
consistency Tolerance. VII, 295 pages. 2004.

Vol. 3299: F. Wang (Ed.), Automated Technology for Ver-
ification and Analysis. XII, 506 pages. 2004.

Vol. 3298: S.A. Mcllraith, D. Plexousakis, F. van Harme-
len (Eds.), The Semantic Web — ISWC 2004. XXI, 841
pages. 2004.

Vol. 3296: L. Bougé, V.K. Prasanna (Eds.), High Perfor-
mance Computing - HiPC 2004. XXV, 530 pages. 2004.

Vol. 3295: P. Markopoulos, B. Eggen, E. Aarts, J.L. Crow-
ley (Eds.), Ambient Intelligence. XIII, 388 pages. 2004.

Vol. 3294: C.N. Dean, R.T. Boute (Eds.), Teaching Formal
Methods. X, 249 pages. 2004.

Vol. 3293: C.-H. Chi, M. van Steen, C. Wills (Eds.), Web
Content Caching and Distribution. IX, 283 pages. 2004.

Vol. 3292: R. Meersman, Z. Tari, A. Corsaro (Eds.), On the
Move to Meaningful Internet Systems 2004: OTM 2004
Woerkshops. XXIII, 885 pages. 2004.

Vol. 3291: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE, Part II. XXV, 824 pages. 2004.

Vol. 3290: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE, Part 1. XXV, 823 pages. 2004.

Vol. 3289: S. Wang, K. Tanaka, S. Zhou, T.W. Ling, J.
Guan, D. Yang, F. Grandi, E. Mangina, L.-Y. Song, H.C.
Mayr (Eds.), Conceptual Modeling for Advanced Appli-
cation Domains. XXII, 692 pages. 2004.

Vol. 3288: P. Atzeni, W. Chu, H. Lu, S. Zhou, T.W. Ling
(Eds.), Conceptual Modeling — ER 2004. XXI, 869 pages.
2004.

Vol. 3287: A. Sanfeliu, J.F. Martinez Trinidad, J.A. Car-
rasco Ochoa (Eds.), Progress in Pattern Recognition, Im-
age Analysis and Applications. XVII, 703 pages. 2004.

Vol. 3286: G. Karsai, E. Visser (Eds.), Generative Pro-
gramming and Component Engineering. XIII, 491 pages.
2004.

Vol. 3285: S. Manandhar, J. Austin, U.B. Desai, Y. Oy-
anagi, A. Talukder (Eds.), Applied Computing. XII, 334
pages. 2004.

Vol. 3284: A. Karmouch, L. Korba, E.R.M. Madeira
(Eds.), Mobility Aware Technologies and Applications.
XII, 382 pages. 2004.

Vol. 3283: FA. Aagesen, C. Anutariya, V. Wuwongse
(Eds.), Intelligence in Communication Systems. XIII, 327
pages. 2004.

Vol. 3282: V. Guruswami, List Decoding of Error-
Correcting Codes. XIX, 350 pages. 2004.

Vol. 3281: T. Dingsgyr (Ed.), Software Process Improve-
ment. X, 207 pages. 2004.

Vol. 3280: C. Aykanat, T. Dayar, I. Kérpeoglu (Eds.), Com-
puter and Information Sciences - ISCIS 2004. X VIII, 1009
pages. 2004.

Vol. 3279: G.M. Voelker, S. Shenker (Eds.), Peer-to-Peer
Systems III. X1, 300 pages. 2004.

Vol. 3278: A. Sahai, F. Wu (Eds.), Utility Computing. XI,
272 pages. 2004.

Vol. 3275: P. Perner (Ed.), Advances in Data Mining. VIII,
173 pages. 2004. (Subseries LNAI).

Vol. 3274: R. Guerraoui (Ed.), Distributed Computing.
XII1, 465 pages. 2004.

Vol. 3273: T. Baar, A. Strohmeier, A. Moreira, S.J. Mel-
lor (Eds.), <<UML>> 2004 - The Unified Modelling
Language. XIII, 454 pages. 2004.

Vol. 3272: L. Baresi, S. Dustdar, H. Gall, M. Matera (Eds.),
Ubiquitous Mobile Information and Collaboration Sys-
tems. VIII, 197 pages. 2004.

Vol. 3271: J. Vicente, D. Hutchison (Eds.), Management
of Multimedia Networks and Services. XIII, 335 pages.
2004.

Vol. 3270: M. Jeckle, R. Kowalczyk, P. Braun (Eds.), Grid
Services Engineering and Management. X, 165 pages.
2004.

Vol. 3269: ]. Lopez, S. Qing, E. Okamoto (Eds.), Informa-
tion and Communications Security. XI, 564 pages. 2004.

Vol. 3268: W. Lindner, M. Mesiti, C. Tiirker, Y. Tzitzikas,
A. Vakali (Eds.), Current Trends in Database Technology
- EDBT 2004 Workshops. X VIII, 608 pages. 2004.

Vol. 3267: C. Priami, P. Quaglia (Eds.), Global Comput-
ing. VIII, 377 pages. 2004.

Vol. 3266: J. Solé-Pareta, M. Smirnov, P.V. Mieghem, J.
Domingo-Pascual, E. Monteiro, P. Reichl, B. Stiller, R.J.
Gibbens (Eds.), Quality of Service in the Emerging Net-
working Panorama. X VI, 390 pages. 2004.

Vol. 3265: R.E. Frederking, K.B. Taylor (Eds.), Machine
Translation: From Real Users to Research. X1, 392 pages.
2004. (Subseries LNAI).

Vol. 3264: G. Paliouras, Y. Sakakibara (Eds.), Gram-
matical Inference: Algorithms and Applications. XI, 291
pages. 2004. (Subseries LNAI).

Vol. 3263: M. Weske, P. Liggesmeyer (Eds.), Object-
Oriented and Internet-Based Technologies. XII, 239
pages. 2004.

Vol. 3262: M.M. Freire, P. Chemouil, P. Lorenz, A. Gravey
(Eds.), Universal Multiservice Networks. XIII, 556 pages.
2004.

Vol. 3261: T. Yakhno (Ed.), Advances in Information Sys-
tems. XIV, 617 pages. 2004.

Vol. 3260: .G.M.M. Niemegeers, S.H. de Groot (Eds.),
Personal Wireless Communications. XIV, 478 pages.
2004.

Vol. 3259: J. Dix, J. Leite (Eds.), Computational Logic in
Multi-Agent Systems. XII, 251 pages. 2004. (Subseries
LNAID).

Vol. 3258: M. Wallace (Ed.), Principles and Practice of
Constraint Programming — CP 2004. XVII, 822 pages.
2004.



Table of Contents

Invited Talks

Building the World from First Principles:
Declarative Machine Descriptions and Compiler Construction............ 1
Norman Ramsey

Code COMPIESSION . . vttt vttt tie ettt iiiiae e iiiiae s 5
Saumya Debray

Papers

Functional Framework for Sound Synthesis .................... ... ..., 7
Jerzy Karczmarczuk

Specializing Narrowing for Timetable Generation: A Case Study ......... 22
Nadia Brauner, Rachid Echahed, Gerd Finke,
Hanns Gregor, and Frederic Prost

Character-Based Cladistics and Answer Set Programming ............... 37
Daniel R. Brooks, Esra Erdem, James W. Minett, and Donald Ringe

Role-Based Declarative Synchronization for Reconfigurable Systems ..... 52
Viad Tanasescu and Pawel T. Wojciechowski

Towards a More Practical Hybrid Probabilistic Logic
Programming Framework ............. ... ... i il 67
Emad Saad and Enrico Pontelli

Safe Programming with Pointers Through Stateful Views ............... 83
Dengping Zhu and Hongwei Xi

Towards Provably Correct Code Generation
via Horn Logical Continuation Semantics ...................oiivin.... 98
Qian Wang, Gopal Gupta, and Micheel Leuschel

A Provably Correct Compiler for Efficient Model Checking -
Of MoODbIle ProCesses . ....viiint ittt it ettt et 113
Ping Yang, Yifei Dong, C.R. Ramakrishnan, and Scott A. Smolka

An Ordered Logic Program Solver ...............coiiiiiiiiiiiinn.. 128
Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

Improving Memory Usage in the BEAM .......... ... ... .o ua... 143
Ricardo Lopes and Vitor Santos Costa



VIII Table of Contents
Solving Constraints on Sets of Spatial Objects ........................ 158
Jesis M. Almendros-Jiménez and Antonio Corral

Discovery of Minimal Unsatisfiable Subsets of Constraints
Using Hitting Set Dualization ............... oo, 174
James Bailey and Peter J. Stuckey

Solving Collaborative Fuzzy Agents Problems with CLP(FD) ........... 187
Susana Munoz-Hernandez and Jose Manuel Gomez-Perez

Improved Fusion for Optimizing Generics ...............cvviienean... 203
Artem Alimarine and Sjaak Smetsers

The Program Inverter LRinv and Its Structure ....................... 219
Masahiko Kawabe and Robert Glick

A Full Pattern-Based Paradigm for XML Query Processing ............. 235
Véronique Benzaken, Giuseppe Castagna, and Cédric Miachon

Type Class DIirectives . .........uueieiin ittt 253
Bastiaan Heeren and Jurriaan Hage

Author Index ........... 269



Building the World from First Principles:
Declarative Machine Descriptions
and Compiler Construction
(Abstract)

Norman Ramsey

Division of Engineering and Applied Sciences
Harvard University
http://www.eecs.harvard.edu/ nr

For at least 25 years, the most effective way to retarget systems software has been
by using machine descriptions. But “machine description” doesn’t mean what
you think. A traditional machine description does contain information about the
machine, but its utility is compromised in one of two ways:

— The description is useful only in support of a particular algorithm, such as
instruction-set emulation, LR parsing, or bottom-up tree matching.

— Information about the machine is inextricably intertwined with information
about a particular tool’s internal representation, such as a compiler’s inter-
mediate code.

The result is that a machine description used to build one tool — a compiler, as-
sembler, linker, debugger, disassembler, emulator, simulator, binary translator,
executable editor, verification-condition generator, or what have you — is typi-
cally useless for any other purpose. Another difficulty is that to write a machine
description, you have to be a double expert: for example, to write the machine
description used to retarget a compiler, you must know not only about the target
machine but also about the internals of the compiler.

My colleagues, my students, and I have been exploring an alternative: the
declarative machine description.

— It tries to favor no algorithm over any other.

— It is independent of any tool’s internal representation, and indeed, indepen-
dent of any tool’s implementation language.

— It describes only properties of the machine, preferably in a way that is de-
signed for analysis, not for execution.

We are focusing on properties that are used in the construction of systems soft-
ware. We have three long-term goals:

— Declarative machine descriptions should be reusable. That is, from just a
few descriptions of a machine, we want to build all of the software needed
to support that machine.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 1-4, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 Norman Ramsey

— Declarative machine descriptions should decouple machine knowledge from
tool knowledge. That is, if you know all about a machine, you should be able
to retarget a tool by writing a description of the machine, even if you know
nothing about the tool.

— Declarative machine descriptions should meet the hardware halfway. That is,
our descriptions should be provably consistent with the formal descriptions
used to synthesize hardware.

We can realize these benefits only if we can solve a hard problem: instead of
relying on a human programmer to apply machine knowledge to the construction
of a particular tool, we must somehow build tool knowledge into a program gen-
erator that can read a machine description and generate the tool!. For example,
in our machine-description language SLED, we specify encoding and decoding
of machine instructions declaratively, by sets of equations. We then use an equa-
tion solver to generate encoders and decoders (assemblers and disassemblers) by
applying two kinds of tool knowledge: knowledge about relocatable object code
and knowledge about decoding algorithms.

All of which brings us to the title of this talk. What if, instead of writing a
code generator in a domain-specific language and calling the result a machine
description, we start with a true declarative machine description and build the
code generator from first principles? What are the first principles? What kinds
of tool knowledge are neded to generate a code generator? Why is the problem
hard?

We start with a simple, declarative machine description that answers two
questions:

— What is the mutable state of the machine?
— When an instruction is executed, how does that state change?

Given answers to these questions, building a simulator is straightforward. But
to build a compiler, we must be able to take a source program, understand its
semantics in terms of state change, then find a sequence of machine instructions
implementing that state change. This problem lies at the hard of building not
only a compiler but also many other tools: we must somehow generalize and
invert the information in the machine description.

The inversion problem has lain fallow for years. The key insight we bring
is that a code generator based on inversion need not produce good code - it
is enough to produce correct code. We know this because of the work of Jack
Davidson and his colleagues, who developed the following compilation strategy:

— Generate very naive code
— Improve the code under the invariant that every node in the flow graph can
be represented by a single instruction on the target machine.

! Program generators often dodge this problem by allowing a machine description to
“escape” to hand-written code. But hand-written code used to build one tool is
likely to be useless in building another, and especially if it contains library calls,
hand-written code can be nearly impossible to analyze.



Declarative Machine Descriptions and Compiler Construction 3

This simple strategy leads to very good machine code, and it has been applied

successfully in the po, vpo, and gec compilers.
Using Davidson’s compilation strategy, we need to read a machine description

and generate four components:

— A register allocator, to map temporaries to machine registers
— A “code expander,” to select machine instructions

— A “recognizer,” to maintain the single-instruction invariant
— An emitter, to emit assembly language for each instruction

The talk will describe these components and how we can hope to generate them
from declarative machine descriptions. Our work is still very much in progress,
but we have two reasons for optimism:

— We don’t need descriptions of very many properties.
— We get a lot of mileage from one idea: binding time.

We also hope to be able to take machine-specific human knowledge and capture
it as universal truths of mathematics, which will then enable us to apply that
knowledge to new machines.

References

Manuel E. Benitez and Jack W. Davidson. 1988 (July). A portable global optimizer
and linker. Proceedings of the ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation, in SIGPLAN Notices, 23(7):329-338.

Jack W. Davidson and Christopher W. Fraser. 1984 (October). Code selection through
object code optimization. ACM Transactions on Programming Languages and Sys-
tems, 6(4):505-526.

Lee D. Feigenbaum. 2001 (April). Automated translation: Generating a code gener-
ator. Technical Report TR-12-01, Harvard University, Computer Science Technical
Reports.

Mary F. Ferndndez and Norman Ramsey. 1997 (May). Automatic checking of in-
struction specifications. In Proceedings of the International Conference on Software
Engineering, pages 326-336.

Norman Ramsey. 1996 (May)a. Relocating machine instructions by currying. ACM
SIGPLAN ’96 Conference on Programming Language Design and Implementation,
in SIGPLAN Notices, 31(5):226-236.

Norman Ramsey. 1996 (April)b. A simple solver for linear equations containing non-
linear operators. Software — Practice & Ezperience, 26(4):467-487.

Norman Ramsey. 2003 (May). Pragmatic aspects of reusable program generators. Jour-
nal of Functional Programming, 13(3):601-646. A preliminary version of this paper
appeared in Semantics, Application, and Implementation of Program Generation,
LNCS 1924, pages 149-171.

Norman Ramsey and Cristina Cifuentes. 2003 (March). A transformational approach
to binary translation of delayed branches. ACM Transactions on Programming Lan-
guages and Systems, 25(2):210-224.

Norman Ramsey and Jack W. Davidson. 1998 (June). Machine descriptions to build
tools for embedded systems. In ACM SIGPLAN Workshop on Languages, Compilers,
and Tools for Embedded Systems (LCTES’98), volume 1474 of LNCS, pages 172-188.
Springer Verlag.



4 Norman Ramsey

Norman Ramsey, Jack W. Davidson, and Mary F. Fernandez. 2001. Design
principles for machine-description languages. Unpublished draft available from
http://www.eecs.harvard.edu/ nr/pubs/desprin-abstract.html.

Norman Ramsey and Mary F. Ferndndez. 1995 (January). The New Jersey Machine-
Code Toolkit. In Proceedings of the 1995 USENIX Technical Conference, pages
289-302, New Orleans, LA.

Norman Ramsey and Mary F. Fernandez. 1997 (May). Specifying representations of
machine instructions. ACM Transactions on Programming Languages and Systems,
19(3):492-524.

Kevin Redwine and Norman Ramsey. 2004 (April). Widening integer arithmetic. In
13th International Conference on Compiler Construction (CC 2004), volume 2985
of LNCS, pages 232-249.

Michael D. Smith, Norman Ramsey, and Glenn Holloway. 2004 (June). A generalized
algorithm for graph-coloring register allocation. ACM SIGPLAN ’0j Conference on
Programming Language Design and Implementation, in SIGPLAN Notices, 39(6):
277-288.



Code Compression
(Abstract)

Saumya Debray

Department of Computer Science
University of Arizona
Tucson, AZ 85721
debray@cs.arizona.edu

Increasingly, we see a trend where programmeable processors are incorporated
into a wide variety of everyday devices, ranging from “smart badges,” copy and
fax machines, phones, and automobiles to traffic lights and wireless sensor net-
works. At the same time, the functionality expected of the software deployed on
such processors becomes increasingly complex (e.g., general-purpose operating
systems such as Linux on cell phones, intrusion-detection and related security
security measures on wireless sensor devices). The increasing complexity of such
software, and the reliability expected of them, suggest a plausible application
of declarative languages. However, programs in declarative languages very often
experience a significant increase in code size when they are compiled down to
native code. This can be a problem in situations where the amount of mem-
ory available is limited. This talk discusses a number of different techniques for
reducing the memory footprint of executables.

We begin with a discussion of classical compiler optimizations that can be
used to reduce the size of the generated code. While such optimizations have
traditionally focused on improving execution speed, they can be adapted quite
easily to use code size as the optimization criterion instead. Especially effective
are optimizations such as dead and unreachable code elimination, as well as
targeted function inlining (e.g., where the callee has exactly one call site, or
where inlining a function results in the elimination of so many instructions that
the resulting code is smaller than the original). These optimizations can be made
even more effective via aggressive interprocedural constant propagation and alias
analysis, since this can propagate information from the call sites of a function into
its body, potentially allowing conditionals in the body to be evaluated statically,
thus making it possible to identify more of the code as unreachable.

Further code size reduction is possible using various techniques for code fac-
toring, which aims to reduce code size by getting rid of repeated code fragments.
This is, in essence, simply an application of procedural abstraction: repeated
occurrences of a code sequence at various locations in a program are replaced by
a single instance of that code that is instead called from those locations. For this
to be effective, it is necessary to be able to handle code sequences that are similar
but may not be identical. We currently sue a low-level approach to dealing with
this, via register renaming at the basic block level. An alternative would be to

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 5-6, 2005.
© Springer-Verlag Berlin Heidelberg 2005



6 Saumya Debray

use some sort of partial tree matching on a higher level program representation
such as syntax trees.

Classical optimizations, coupled with code factoring, gives code size reduc-
tions of around 30% on average. The main reason this value is not higher is the
constraint that the code be maintained in executable form. We can relax this
constraint by keeping code in a non-executable compressed form, and decom-
pressing it on the fly into a runtime buffer when needed. The main drawback
here is the runtime cost of decompression, which can be quite substantial. Fortu-
nately, most programs follow the so-called “80-20 rule,” which states in essence
that most of a program’s time is spent executing a small portion of its code; a
corollary is that most of a program’s code is executed only infrequently, if at
all. Judicious use of profile information to guide the selection of which code is
decompressed at runtime yields additional code size reductions of about 15% on
average, with runtime overheads of around 4%.

An orthogonal direction to code size reduction involves dynamic code muta-
tion. The idea here is to identify a set of “similar” code fragments and keep just
one representative copy of their code. At runtime, we simply edit the text sec-
tion of the executable to change the code of the representative appropriately to
construct the code fragment that is needed. The runtime mutations are carried
out by a “code editor” that is driven by an edit script that describes the edits
necessary to change one code fragment into another. This is conceptually simi-
lar to classical sequence alignment, except that in our case the edits are carried
out in situ, which makes insertion operations very expensive. We use clustering
algorithms driven by a notion of “distance” between code fragments that aims
to estimate the cost of editing one sequence to construct another. Initial experi-
ments suggest that such an approach may be useful for constructs such as C++
templates.



Functional Framework for Sound Synthesis

Jerzy Karczmarczuk

Dept. of Computer Science, University of Caen, France
karczma@info.unicaen.fr

Abstract. We present an application of functional programming in the domain of
sound generation and processing. We use the lazy language Clean to define purely
functional stream generators, filters and other processors, such as reverberators.
Audio signals are represented (before the final output to arrays processed by the
system primitives) as co-recursive lazy streams, and the processing algorithms
have a strong dataflow taste. This formalism seems particularly appropriate to
implement the ‘waveguide’, or ‘physically-oriented’ sound models. Lazy pro-
gramming allocates the dynamical memory quite heavily, so we do not propose
a real-time, industrial strength package, but rather a pedagogical library, offering
natural, easy to understand coding tools. We believe that, thanks to their simplic-
ity and clearness, such functional tools can be also taught to students interested
in audio processing, but with a limited competence in programming.

Keywords: Lazy streams, Sounds, DSP, Clean.

1 Introduction

The amplitude of a sound (for one channel) may be thought of as a real function f of
time ¢, and it is fascinating how much structural information it may contain [1]. In order
to produce some audible output, this function must be sampled, and transformed into a
signal, and this is the basic data type we shall work on. Sound may be represented at
many different levels, and if one is interested in the structure of sequences of musical
events, chords, phrases, etc., there is no need to get down to the digital signal processing
primitives. It may seem more interesting and fruitful to speak about the algebra of mu-
sical events, music combinators, etc. This was the idea of Haskore [2], whose authors
used Haskell to define and to construct a whole spectrum of musical “implementable
abstractions”. Haskore deals with high-level musical structures, and consigns the low-
level, such as the interpretation of the MIDI streams, or the spectral structure of sounds
to some back-end applications, MIDI players or CSound [3].

We decided to use the functional approach for the specification and the coding of
this “low end” sound generation process. This is usually considered a highly numerical
domain involving filter and wave-guide design [4], Fourier analysis, some phenomeno-
logical “magic” of the Frequency Modulation approach [5], or some models based on
simplified physics, such as the Karplus-Strong algorithm [6] for the plucked string, and
its extensions. But the generation and transformation of sounds is a constructive do-
main, dealing with complex abstractions (such as timbre, reverberation, etc.), and it
may be based on a specific algebra as well. A possible application of functional pro-
gramming paradigms as representation and implementation tools seems quite natural.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 7-21, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



