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Preface

The International Symposium on Practical Aspects of Declarative Languages
(PADL) is a forum for researchers and practioners to present original work
emphasizing novel applications and implementation techniques for all forms of
declarative concepts, including functional, logic, constraints, etc. Declarative lan-
guages build on sound theoretical foundations to provide attractive frameworks
for application development. These languages have been successfully applied to
a wide array of different real-world situations, including database management,
active networks, software engineering, decision support systems, or music com-
position; whereas new developments in theory and implementation have opened
up new application areas. Inversely, applications often drive the progress in the
theory and implementation of declarative systems, as well as benefit from this
progress.

The 7th PADL Symposium was held in Long Beach, California on January
10-11, 2005, and was co-located with ACM’s Principles of Programming Lan-
guages (POPL). From 36 submitted papers, the Program Committee selected 17
papers for presentation at the symposium, based upon at least three reviews for
each paper, provided from Program Committee members and additional referees.

Two invited talks were presented at the conference: one by Norman Ram-
sey (Harvard University) entitled “Building the World from First Principles:
Declarative Machine Descriptions and Compiler Construction”; and a second by
Saumya Debray (University of Arizona) entitled “Code Compression.”

Following what has become a tradition in PADL symposia, the Program
Committee selected one paper to receive the “Most Practical Paper” award.
This year the paper judged the best in terms of practicality, originality, and
clarity was “A Provably Correct Compiler for Efficient Model Checking of Mobile
Processes,” by Ping Yang, Yifei Dong, C.R. Ramakrishnan, and Scott A. Smolka.
This paper presents an optimizing compiler for the pi-calculus that improves the
efficiency of model-checking specifications in a logic-programming-based model
checker.

The PADL symposium series is sponsored in part by the Association for Logic
Programming (http://www.cs.kuleuven.ac.be/"dtai/projects/ALP/) and
COMPULOG Americas (http://www.cs.nmsu.edu/ complog/). Thanks are
also due to the University of Texas at Dallas for its support. Finally, we want to
thank the authors who submitted papers to PADL 2005 and all who participated
in the conference.

November 2004 Manuel Hermenegildo
Daniel Cabeza
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Building the World from First Principles:
Declarative Machine Descriptions
and Compiler Construction
(Abstract)

Norman Ramsey

Division of Engineering and Applied Sciences
Harvard University
http://www.eecs.harvard.edu/ nr

For at least 25 years, the most effective way to retarget systems software has been
by using machine descriptions. But “machine description” doesn’t mean what
you think. A traditional machine description does contain information about the
machine, but its utility is compromised in one of two ways:

— The description is useful only in support of a particular algorithm, such as
instruction-set emulation, LR parsing, or bottom-up tree matching.

— Information about the machine is inextricably intertwined with information
about a particular tool’s internal representation, such as a compiler’s inter-
mediate code.

The result is that a machine description used to build one tool — a compiler, as-
sembler, linker, debugger, disassembler, emulator, simulator, binary translator,
executable editor, verification-condition generator, or what have you — is typi-
cally useless for any other purpose. Another difficulty is that to write a machine
description, you have to be a double expert: for example, to write the machine
description used to retarget a compiler, you must know not only about the target
machine but also about the internals of the compiler.

My colleagues, my students, and I have been exploring an alternative: the
declarative machine description.

— It tries to favor no algorithm over any other.

— It is independent of any tool’s internal representation, and indeed, indepen-
dent of any tool’s implementation language.

— It describes only properties of the machine, preferably in a way that is de-
signed for analysis, not for execution.

We are focusing on properties that are used in the construction of systems soft-
ware. We have three long-term goals:

— Declarative machine descriptions should be reusable. That is, from just a
few descriptions of a machine, we want to build all of the software needed
to support that machine.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 1-4, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 Norman Ramsey

— Declarative machine descriptions should decouple machine knowledge from
tool knowledge. That is, if you know all about a machine, you should be able
to retarget a tool by writing a description of the machine, even if you know
nothing about the tool.

— Declarative machine descriptions should meet the hardware halfway. That is,
our descriptions should be provably consistent with the formal descriptions
used to synthesize hardware.

We can realize these benefits only if we can solve a hard problem: instead of
relying on a human programmer to apply machine knowledge to the construction
of a particular tool, we must somehow build tool knowledge into a program gen-
erator that can read a machine description and generate the tool!. For example,
in our machine-description language SLED, we specify encoding and decoding
of machine instructions declaratively, by sets of equations. We then use an equa-
tion solver to generate encoders and decoders (assemblers and disassemblers) by
applying two kinds of tool knowledge: knowledge about relocatable object code
and knowledge about decoding algorithms.

All of which brings us to the title of this talk. What if, instead of writing a
code generator in a domain-specific language and calling the result a machine
description, we start with a true declarative machine description and build the
code generator from first principles? What are the first principles? What kinds
of tool knowledge are neded to generate a code generator? Why is the problem
hard?

We start with a simple, declarative machine description that answers two
questions:

— What is the mutable state of the machine?
— When an instruction is executed, how does that state change?

Given answers to these questions, building a simulator is straightforward. But
to build a compiler, we must be able to take a source program, understand its
semantics in terms of state change, then find a sequence of machine instructions
implementing that state change. This problem lies at the hard of building not
only a compiler but also many other tools: we must somehow generalize and
invert the information in the machine description.

The inversion problem has lain fallow for years. The key insight we bring
is that a code generator based on inversion need not produce good code - it
is enough to produce correct code. We know this because of the work of Jack
Davidson and his colleagues, who developed the following compilation strategy:

— Generate very naive code
— Improve the code under the invariant that every node in the flow graph can
be represented by a single instruction on the target machine.

! Program generators often dodge this problem by allowing a machine description to
“escape” to hand-written code. But hand-written code used to build one tool is
likely to be useless in building another, and especially if it contains library calls,
hand-written code can be nearly impossible to analyze.
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This simple strategy leads to very good machine code, and it has been applied

successfully in the po, vpo, and gec compilers.
Using Davidson’s compilation strategy, we need to read a machine description

and generate four components:

— A register allocator, to map temporaries to machine registers
— A “code expander,” to select machine instructions

— A “recognizer,” to maintain the single-instruction invariant
— An emitter, to emit assembly language for each instruction

The talk will describe these components and how we can hope to generate them
from declarative machine descriptions. Our work is still very much in progress,
but we have two reasons for optimism:

— We don’t need descriptions of very many properties.
— We get a lot of mileage from one idea: binding time.

We also hope to be able to take machine-specific human knowledge and capture
it as universal truths of mathematics, which will then enable us to apply that
knowledge to new machines.
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Increasingly, we see a trend where programmeable processors are incorporated
into a wide variety of everyday devices, ranging from “smart badges,” copy and
fax machines, phones, and automobiles to traffic lights and wireless sensor net-
works. At the same time, the functionality expected of the software deployed on
such processors becomes increasingly complex (e.g., general-purpose operating
systems such as Linux on cell phones, intrusion-detection and related security
security measures on wireless sensor devices). The increasing complexity of such
software, and the reliability expected of them, suggest a plausible application
of declarative languages. However, programs in declarative languages very often
experience a significant increase in code size when they are compiled down to
native code. This can be a problem in situations where the amount of mem-
ory available is limited. This talk discusses a number of different techniques for
reducing the memory footprint of executables.

We begin with a discussion of classical compiler optimizations that can be
used to reduce the size of the generated code. While such optimizations have
traditionally focused on improving execution speed, they can be adapted quite
easily to use code size as the optimization criterion instead. Especially effective
are optimizations such as dead and unreachable code elimination, as well as
targeted function inlining (e.g., where the callee has exactly one call site, or
where inlining a function results in the elimination of so many instructions that
the resulting code is smaller than the original). These optimizations can be made
even more effective via aggressive interprocedural constant propagation and alias
analysis, since this can propagate information from the call sites of a function into
its body, potentially allowing conditionals in the body to be evaluated statically,
thus making it possible to identify more of the code as unreachable.

Further code size reduction is possible using various techniques for code fac-
toring, which aims to reduce code size by getting rid of repeated code fragments.
This is, in essence, simply an application of procedural abstraction: repeated
occurrences of a code sequence at various locations in a program are replaced by
a single instance of that code that is instead called from those locations. For this
to be effective, it is necessary to be able to handle code sequences that are similar
but may not be identical. We currently sue a low-level approach to dealing with
this, via register renaming at the basic block level. An alternative would be to
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use some sort of partial tree matching on a higher level program representation
such as syntax trees.

Classical optimizations, coupled with code factoring, gives code size reduc-
tions of around 30% on average. The main reason this value is not higher is the
constraint that the code be maintained in executable form. We can relax this
constraint by keeping code in a non-executable compressed form, and decom-
pressing it on the fly into a runtime buffer when needed. The main drawback
here is the runtime cost of decompression, which can be quite substantial. Fortu-
nately, most programs follow the so-called “80-20 rule,” which states in essence
that most of a program’s time is spent executing a small portion of its code; a
corollary is that most of a program’s code is executed only infrequently, if at
all. Judicious use of profile information to guide the selection of which code is
decompressed at runtime yields additional code size reductions of about 15% on
average, with runtime overheads of around 4%.

An orthogonal direction to code size reduction involves dynamic code muta-
tion. The idea here is to identify a set of “similar” code fragments and keep just
one representative copy of their code. At runtime, we simply edit the text sec-
tion of the executable to change the code of the representative appropriately to
construct the code fragment that is needed. The runtime mutations are carried
out by a “code editor” that is driven by an edit script that describes the edits
necessary to change one code fragment into another. This is conceptually simi-
lar to classical sequence alignment, except that in our case the edits are carried
out in situ, which makes insertion operations very expensive. We use clustering
algorithms driven by a notion of “distance” between code fragments that aims
to estimate the cost of editing one sequence to construct another. Initial experi-
ments suggest that such an approach may be useful for constructs such as C++
templates.
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Abstract. We present an application of functional programming in the domain of
sound generation and processing. We use the lazy language Clean to define purely
functional stream generators, filters and other processors, such as reverberators.
Audio signals are represented (before the final output to arrays processed by the
system primitives) as co-recursive lazy streams, and the processing algorithms
have a strong dataflow taste. This formalism seems particularly appropriate to
implement the ‘waveguide’, or ‘physically-oriented’ sound models. Lazy pro-
gramming allocates the dynamical memory quite heavily, so we do not propose
a real-time, industrial strength package, but rather a pedagogical library, offering
natural, easy to understand coding tools. We believe that, thanks to their simplic-
ity and clearness, such functional tools can be also taught to students interested
in audio processing, but with a limited competence in programming.

Keywords: Lazy streams, Sounds, DSP, Clean.

1 Introduction

The amplitude of a sound (for one channel) may be thought of as a real function f of
time ¢, and it is fascinating how much structural information it may contain [1]. In order
to produce some audible output, this function must be sampled, and transformed into a
signal, and this is the basic data type we shall work on. Sound may be represented at
many different levels, and if one is interested in the structure of sequences of musical
events, chords, phrases, etc., there is no need to get down to the digital signal processing
primitives. It may seem more interesting and fruitful to speak about the algebra of mu-
sical events, music combinators, etc. This was the idea of Haskore [2], whose authors
used Haskell to define and to construct a whole spectrum of musical “implementable
abstractions”. Haskore deals with high-level musical structures, and consigns the low-
level, such as the interpretation of the MIDI streams, or the spectral structure of sounds
to some back-end applications, MIDI players or CSound [3].

We decided to use the functional approach for the specification and the coding of
this “low end” sound generation process. This is usually considered a highly numerical
domain involving filter and wave-guide design [4], Fourier analysis, some phenomeno-
logical “magic” of the Frequency Modulation approach [5], or some models based on
simplified physics, such as the Karplus-Strong algorithm [6] for the plucked string, and
its extensions. But the generation and transformation of sounds is a constructive do-
main, dealing with complex abstractions (such as timbre, reverberation, etc.), and it
may be based on a specific algebra as well. A possible application of functional pro-
gramming paradigms as representation and implementation tools seems quite natural.
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