Applications & Science of Neural
Networks, Fuzzy Systems, &
Evolutionary Computation III

Vol. 4120



PROCEEDINGS OF SPIE

SPIE—The International Society for Optical Engineering

Applications and Science of
Neural Networks, Fuzzy Systems,
and Evolutionary Computation 111

Bruno Bosacchi
David B. Fogel
James C. Bezdek
Chairs/Editors

31 July-1 August 2000
San Diego, USA

Sponsored and Published by
SPIE—The International Society for Optical Engineering

Cooperating Organization
Society for Industrial and Applied Mathematics (SIAM)

Volume 4120

SPIE is an international technical society dedicated to advancing engineering and scientific
applications of optical, photonic, imaging, electronic, and optoelectronic technologies.



The papers appearing in this book compose the proceedings of the technical conference cited on
the cover and title page of this volume. They reflect the authors' opinions and are published as
presented, in the interests of timely dissemination. Their inclusion in this publication does not
necessarily constitute endorsement by the editors or by SPIE. Papers were selected by the
conference program committee to be presented in oral or poster format, and were subject to
review by volume editors or program committees.

Please use the following format to cite material from this book:

Author(s), "Title of paper," in Applications and Science of Neural Networks, Fuzzy Systems,
and Evolutionary Computation /ll, Bruno Bosacchi, David B. Fogel, James C. Bezdek, Editors,
Proceedings of SPIE Vol. 4120, page numbers (2000).

ISSN 0277-786X
ISBN 0-8194-3765-4

Published by

SPIE—The International Society for Optical Engineering

P.0O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone 1 360/676-3290 (Pacific Time) « Fax 1 360/647-1445
http://www.spie.org/

Copyright©2000, The Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use
of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized
by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this
volume is $15.00 per article (or portion thereof), which should be paid directly to the Copyright
Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923 USA. Payment may also be
made electronically through CCC Online at http://www .directory.net/copyright/. Other copying for
republication, resale, advertising or promotion, or any form of systematic or multiple reproduction
of any material in this book is prohibited except with permission in writing from the publisher.
The CCC fee code is 0277-786X/00/$15.00.

Printed in the United States of America.



Conference Committee

Conference Chairs

Bruno Bosacchi, Lucent Technologies/Bell Laboratories (USA)
David B. Fogel, Natural Selection, Inc. (USA)
James C. Bezdek, University of West Florida (USA)

Program Committee

Peter J. Angeline, Natural Selection, Inc. (USA)

Palma N. Blonda, Istituto Elaborazione Segnali ed Immagini (ltaly)
Piero P. Bonissone, GE Research and Development Center (USA)
Kumar Chellapilla, Natural Selection, Inc. (USA)

Thomas M. English, The Tom English Project (USA)

Susan Hackwood, University of California/Riverside (USA)
Lawrence O. Hall, University of South Florida (USA)

Fredric M. Ham, Florida Institute of Technology (USA)

Sunanda Mitra, Texas Tech University (USA)

Witold Pedrycz, University of Alberta (Canada)

Anthony V. Sebald, University of California/San Diego (USA)
Mohan M. Trivedi, University of California/San Diego (USA)
Athanasios Vasilakos, Foundation for Research and Technology Hellas (Greece)

vii



Contents

vii Conference Committee
SESSION 1
1 The softest computer (Invited Paper) [4120-01]
H. J. Caulfield, Fisk Univ. (USA); J. L. Johnson, U.S. Army V Corps
5 Combination of an autoassociative morphological memory and the kernel method (4120-02]
P. Sussner, State Univ. of Campinas (Brazil)
14 POP-Yager: a novel self-organizing fuzzy neural network based on the Yager inference
[4120-03]
C. Quek, A. Wahab, S. Aarit, Nanyang Technological Univ. (Singapore)
26 Dynamic brain theory with holographic undertones (Invited Paper) [4120-04]
N. H. Farhat, Univ. of Pennsylvania (USA)
SESSION 2
28 Neural network for image segmentation [4120-06]
A. N. Skourikhine, L. Prasad, B. R. Schlei, Los Alamos National Lab. (USA)
36 Classification of car in lane using support vector machines [4120-07]
M. Del Rose, D. J. Gorsich, R. E. Karlsen, U.S. Army Tank-Automotive Research, Development
and Engineering Ctr.
SESSION 3
43 Review of efforts to evolve strategies to play checkers as well as human experts (Invited
Paper) [(4120-08]
K. Chellapilla, D. B. Fogel, Natural Selection, Inc. (USA)
52 GENIE: a hybrid genetic algorithm for feature classification in multispectral images [4120-09]
S. J. Perkins, J. Theiler, S. P. Brumby, N. R. Harvey, R. B. Porter, J. J. Szymanski, J. J. Bloch,
Los Alamos National Lab. (USA)
63 Combining evolutionary algorithms with oblique decision trees to detect bent-double galaxies
[4120-10]
E. Canti-Paz, C. Kamath, Lawrence Livermore National Lab. (USA)
72 Design of optical devices based on multilayer structures using genetic algorithms [(4120-11]

J. C. Chamma Carvalho, J. C. W. A. Costa, Univ. Federal do Para (Brazil)



SESSION 4

81 Web-based teleautonomy and telepresence (Invited Paper) [4120-12]
M. M. Trivedi, B. Hall, G. Kogut, S. Roche, Univ. of California/San Diego (USA)

SESSION 5

86 Optical implementation of fuzzy-logic-based controllers (Invited Paper) [4120-15]
D. Mendlovic, Z. Zalevsky, E. Gur, Tel Aviv Univ. (Israel)

101 Evaluation and comparison of timing diagrams for selection of components in electronic
design with application of fuzzy logic (Invited Paper) [4120-16]
J. Liu, E. B. Shragowitz, Univ. of Minnesota/Twin Cities (USA)

110 Data reduction for multispectral and hyperspectral imagery based on application of
catastrophe theory [4120-17]
1. V. Ternovskiy, T. M. Jannson, Physical Optics Corp. (USA)

SESSION 6
120 Soft computing, advanced video/imaging processing, and communications (Invited Paper)
[4120-18)
T. M. Jannson, A. A. Kostrzewski, D. H. Kim, S. Ro, I. V. Ternovskiy, Physical Optics
Corp. (USA)

134 Fuzzy classification algorithm as applied to signal discrimination for navy theater-wide missile
defense [4120-21]

C. 0. Savage, H.-W. Chen, J. G. Riddle, H. A. Schmitt, Raytheon Missile Systems (USA)

146 Application of computational intelligence techniques in active networks (Invited Paper)
[4120-19]
A. V. Vasilakos, Foundation for Research and Technology Hellas (Greece); K. G. Anagnostakis,
Univ. of Pennsylvania (USA); W. Pedrycz, Univ. of Alberta (Canada)

156 Scalable singular 3D modeling for digital battlefield applications [4120-22]
T. M. Jannson, I. V. Ternovskiy, Physical Optics Corp. (USA)

SESSION 7

162 Ranking models for combination [4120-26]
T. M. English, The Tom English Project (USA)

170 Biometric speaker classification [4120-27]
D. J. Nelson, D. C. Smith, D. J. Richman, G. L. Townsend, U.S. Dept. of Defense

179 ASE-CMAC for speech enhancement in a vehicular eﬁvironment [4120-29]
A. Wahab, C. Quek, E. C. Tan, Nanyang Technological Univ. (Singapore)

190 Neural-network-enhanced small low-cost low-power sensor for atmospheric gases (Invited
Paper) [4120-30]
S. R. Campbell, E. A. Mendoza, E. Fiesler, Intelligent Optical Systems, Inc. (USA)



POSTER SESSION

198

206

217

229

238

246

253
254

Analysis of nonlinear soliton propagation by the improved FMAT [4120-14]
P. Shum, Nanyang Technological Univ. (Singapore); S. F. Yu, Hong Kong Univ.;
H. Ghafouri-Shiraz, Nanyang Technological Univ. (Singapore)

Simulation of clouds coverage in satellite images by cellular automata (4120-33]
E. Piazza, NAVIA Aviation AS (Norway)

Image understanding architecture based on the methods of computational inteliigence
and hybrid technique [4120-34]
I. Kuvychko, Consultant (USA)

Modified sampling frequency-sensitive network based on evolutionary programming for
pattern clustering [4120-35]
H. Liu, Y. Mo, Shanghai Univ. (China)

Optical holography and computational intelligence: algebraic foundations [4120-36]
A. V. Pavlov, S.I. Vavilov State Optical Institute (Russia)

Gas recognition using a neural network approach to plasma optical emission spectroscopy
[4120-37]

M. Hyland, D. Mariotti, W. Dubitzky, J. A. McLaughlin, P. Maguire, Univ. of Ulster at
Jordanstown (UK)

Addendum
Author Index



Invited Paper

THE SOFTEST COMPUTER
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ABSTRACT

Neural networks, fuzzy systems, and evolutionary computation — the technologies featured in this conference — are often
referred to collectively as “soft computing.” Like “fuzzy logic,” this has an unfortunate overtone, but we are stuck with the
term. I argue that the intuition that governed this grouping of technologies is that they are all human mimetic. Then I offer an
overview of how to construct an artifact that, like you, uses those approaches to exercise judgment and innovate out of
unforeseen problems.

Keywords: soft computing, perception, artificial perception, consciousness, artificial consciousness

1. BASIC REQUIREMENTS FOR A THEORY OF MIND

There is no governing body to set these requirements, but I believe most of you will find these a reasonable place to start.

1. Mind must be simple. Einstein’s advice applies. Everything must be made as simple as possible, but no simpler. I take
this to exclude quantum mechanics, magic, supernatural intervention, Aomunculus, etc. It is not that those things are not
possible. Rather, it is that they are to be regarded as last resorts to be abandoned anytime a simple explanation comes
along. They are thus unstable.

2. Mind must be evolvable. As a product of evolution to which animals devote much energy and space, mind must serve a
purpose. It must arise in a series of small steps each one of which conferred its own survival value to the animal
inheriting it. ‘

3. Mind must be buildable. If I cannot tell you how to build it, what right have I to assert I understand it?

4.

Those requirements exclude most prior approaches to mind, but not all. This work benefits from work by scientists like

Walter Freeman, and Timo Jarvilehto, and even a few philosophers such as Daniel Dennett and John Searle. None of them

would accept responsibility for this, but all of them would find much with which to agree.

2. PERCEPTION: A WARM-UP PROBLEM

For those who have heard or read some of my prior works in this area, I offer a different approach here. I will refer to the
work of two geniuses now at work on mending minds and bodies- Paul Bach-y-Rita and V. S. Ramachandran. So far as I can
tell, this is the first place where their works on perception have bee put into a single context — although they know and respect
each other and each other’s work. Both are experimental pioneers of human perception. Bach-y-Rita has concentrated on our
perception of the outer world. Ramachandran has concentrated on our perception of our bodies.

To those who have not thought analytically about their perception of the outside world, the motto “Seeing is believing”
makes sense. If I see it, it is real. This has been characatured as the doctrine of “Immaculate Perception.” And it is not only
wrong, but also exactly the opposite of the truth. A more accurate motto would be “Believing is seeing.” We see what we
believe is there in view of our expectations, concerns, memories, understanding, and sense data. We see a model of the world
formed in our brains and designed not for accuracy but for utility. There is no way that you can actually perceive something
out there. But your brain can solve a kind of inverse problem to model what is out there and you perceive that model. Space
does not permit a full defense of that assertion here, but most readers will have figured that out for themselves long ago.

So where does vision occur? Not in the eye, as was once thought, but in the mind. So vision should be possible without eyes!
In fact, Bach-y-Rita has given vision to people with no eyes! All they need is to get the relevant information into their brains,
and almost any means will do. Using a small he4ad-mounted camera to gather data, he has inserted it through the skin via the
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abdomen, the back, and (most recently) the tongue (1). It really does not seem to matter. With practice, the mind
automatically correlates this'new information with the information it already knows how to obtain by touch and begins to see
things “out there” in the world without the benefit of eyes. The patient constructs and perceives a mental model of the world.

But you also perceive your own body. Your brain has two body maps — one for sensing and one for acting. Like everything
else in your brain, those models are interacting — what Edelman likes to call reentrant communication. Just as you can have
visual illusions of the outside world, you can mismodel your body. Ramachandran was drawn to this field by the plight of
amputees who, more often than not, experience the missing limb long after it is removed. His book on this is good reading
(2). In it he goes far beyond phantom limbs. In fact he shows how to induce people into experiencing foreign objects as parts
of themselves. How do you do that? The same way Bach-y-Rita’s patients do. They cause a correlation between a familiar
stimulus and the one they want the patient to perceive. The mind takes the new information into its model automatically
when there is such a good correlation.

I wish I had the space to deal with this fully here, as it is a fascinating topic. But, alas, it is only a warm-ub for the next topic,
so I will quit here. Perhaps some of you will ask questions of me or of the real expert — you.

3. AN OUTLINE OF ARTIFICIAL ATTENTION

I hypothesize that the brain is continually updating both models — body and world. There is lots going on in both realms.
Consciousness involves massive computation (the nature of which I have not yet described) on a very slow chemical-
mechanical computer employing neurons, glial cells, and flowing chemicals. Yet it must be done quickly or you will not
evade the predator or find a good mate. One of the many “tricks” nature employs is to filter the potential contents of
consciousness. This is called attention. In performing a task, you generally attend to the information you need to perform it,
but not always. Here are some circumstances that warrant notice:

1. You may be given more information than you can consciously attend. System designers make that mistake, because they
assume a perfect human operator. When confronted with too much information, the attentional system simply ignores
some of it. You do not perceive everything presented. An infamous case of such a situation caused an American sailor to
shoot down an unarmed civilian Iranian airline. He had enough information displayed, but he attended only some of it.
He never saw the information that would have prevented that tragedy.

2. You may consciously choose to attend to something. You can attend to your model of the thumb on your left hand very
easily. In fact, you just did.

3. You usually attend to the unexpected. This brings us back to the correlation between sensory inputs noted earlier. If they
do not correlate with our expectations, we attend them. But we “zero out” predicted events, e.g. the loud beating of the
clock in your bedroom. You do not notice it, because you expect it. Once again, there is much too much to write in too
little space. If you doubt that you attend to unpredicted events differently from predicted ones, try tickling yourself. You
cannot do it, because your movements are predictable. But I could tickle you, because you are not predicting my
movements in detail. Another out-of-norm experience is pain. You would notice your thumb if I struck it with a hammer.

Now consider the situation in which the system designer wants a human operator involved, but is sensible enough to want to
avoid overloading his perceptual bandwidth. What can he do? He can implement what I call “Artificial Perception.” That is
an artificial filtering system between the operating system and the human that controls what is displayed to the human user.
Under normal circumstances, it will display the normal data the operator needs automatically. But, as in human attention, the
operator can choose to attend to anything and out-of-norm things will be brought to the operator’s attention. Of course, it is
not quite that simple. Sometimes there are conflicting goals, so choices must be made for the operator. Human attention does
the same thing. A wonderful illustration is the attention of a soldier wounded in battle. Many other things seem even more
important to his attentional system than the wound. So soldiers often report that they felt no pain from quite hideous wounds
as they were in active advance or retreat. When the battle subsides, the soldier sudd3enly feels the pain.

I argue that Artificial Perception (using what I have said and many things I have no space to tell) is the ideal interface
between a human and a complex system.

4. CONSCIOUSNESS

2 Prar QDPIE \/al 412N



I only have space for a cursory survey of consciousness and I will do so in terms of the criteria suggested above. Let me go
right to the purpose. Consciousness is the only known solution to a survival-critical problem: How do I build a system that
has a good chance of dealing effectively not only with situations its ancestors have seen (through inherited behavior traits,
instincts, etc.) and things the system has encountered in its “lifetime” (through learning) but also situations totally new to the
system/organism and its ancestors? I include a wiring diagram for rudimentary consciousness at the end of this paper. Nature
evolved consciousness bottom-up in this diagram. The last items are the most critical. The role of consciousness is to take
care of the model body in its model world as judged by its limbic system. I will not go into details of the evolution or into
such things as human consciousness (enriched tremendously by language and culture) or self consciousness. The kind of
consciousness outline is likely present in salamanders. It is primitive, but real.

3

5. AN OUTLINE OF ARTIFICIAL CONSCIOUSNESS

To make a complex syster conscious is not very difficult. We must provide it with a system (body) model and the sensory
information to keep ' -+ :..del updated. Likewise for its situation or world model. Then we must provide it with means to
evaluate its current . . .ikely future states — a limbic system. We then give it a chooser module (a self), that uses the models
and stored informat:.i to react in such a way as to optimize the likely good of the system. For those situations in which no
stored responses are likely to be successful, we must provide it with ways to evolve new responses with better likely
outcomes. Humans interact with conscious artifacts by changing their limbic systems. When they want what you want, they
become your conscious extensions.

6. BACK TO SOFT COMPUTING

The Artificial Perception and Artificial Consciousness systems are, by extension of the definition given earlier soft
computing systems. They mimic human computational processes. But instead of being useful tools (as are fuzzy, neural, and
evolutionary methods), these are systems. In a sense, they are higher-order soft computing methods. Within them there will
likely be conventiona' «." - sdules.

1. Fuzzy and neura! .1 . g medde e s o timporisn et the miodels use the -amne underlying
methods as the realities modc .. .. :: is more important that they be approxmatcly correct most of the time and run very
fast. To evolve new behaviors w uh any kind of reasonable speed, we need to exercise the models very rapidly.

2. Evolutionary nicthods (again accelerated for “real time” response) will be necessary for evolving new behaviors when it
is determined that stored behaviors are likely to be inadequate.

So we have soft cor:ponents within soft systems leading to new kinds of controls for complex systems. These controls

combine the best capabilities of conventional controls with conscious systems and human intervention through the system’s
limbic system on the basis of the information the human operator draws from his Artificial Perception interface.
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A Combination of an Autoassocative Morphological Memory
and the Kernel Method

Peter Sussner

Institute of Mathematics, Statistics, and Scientific Computation
State University of Campinas
Campinas, CEP13081-970, SP, Brazil

ABSTRACT

We recently introduced a class of highly nonlinear associative memories called morphological associative memories
(MAMs). Notable features of autoassociative morphological memories (AMMSs) include optimal absolute storage
capacity and one-step convergence. The fixed points can be characterized exactly in terms of the original patterns.
Unfortunately, AMM fixed points include a large number of spurious memories.

In this paper, we use a combination of a basic AMM model and the kernel method in order to eliminate most
of the spurious memories while leaving other AMM properties intact. Furthermore, our new AMM model is more
tolerant to noise than a basic AMM model and less dependent on kernel selection than the original kernel method.

Keywords: Morphological associative memories, autoassociative morphological memories, fixed points, spurious
memories, kernel method

1. INTRODUCTION

Morphological neural networks have been devised as a type of neural networks which is based on the mathematical
theory of minimax algebra.!® Thus, they are drastically different from ”traditional” neural network models which
perform linear operations followed by applications of nonlinear activation functions. Morphological neural networks
were initially applied to a number of special problems.>!>1% A fairly comprehensive and rigorous basis for computing
with morphological neural networks appeared in a paper by Ritter and Sussner.?

One of the first goals achieved in the development of morphological neural networks was the establishment
of a morphological associative memory network (MAM). The basic recording strategies for MAMs are similar to
correlation recording. We have shown that MAMs exhibit many desirable characteristics.!® We proved for example
that the autoassociative morphological memory (AMM) does not impose any restrictions on the number of pattern
associations to be encoded in the memory. Thus 2" patterns can be stored in the binary case, where n is the length of
memory. In comparison, McEliece et al. showed that the absolute (asymptotic) capacity of the Hopfield associative
memory is 57— if with high probability the unique fundamental memory is to be recovered, except for a vanishingly

2logn
small fraction of fundamental memories.® Evidently, the information storage capacity (number of bits which can be
stored and recalled associatively) of the AMM also exceeds the respective number for certain linear matrix associative
memories which was calculated by Palm.®? Furthermore, the AMM converges in one step, i.e. every output pattern
obtained after one application of the AMM is a fixed point or stable state of the memory.

In a recent paper, we succeeded in characterizing the fixed points of binary AMMs as well as the corresponding
basins of attraction.!! Our latest results on the fixed points of AMMs confirm our claim that the min-product version
of the AMM is robust under erosive changes of the key patterns whereas the max-product version is robust under
dilative changes of the key patterns. The kernel method, which exhibits a relatively small number of fixed points,

E-mail: sussner@ime.unicamp.br
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has been used to deal with arbitrarily corrupted input patterns.'® The kernel method’s major drawback is the fact,
that it is heavily dependent on the choice of kernel vectors.

In this paper, we present a new MAM model for autoassociation which consists of a combination of a basic AMM
and the kernel method. Our new AMM model exhibits better error correction capabilities than the basic model and
less dependence on kernel selection than the kernel method.

2. Computational Basis for Morphological Neural Networks

Most of the artificial neural networks which are currently in use specify functions composed of linear operations
and nonlinear activation functions such as thresholding and sigmoidal functions. The underlying algebraic systemn
used in these models is the ring (R, +, ).

Morphological neural network computations are based on a certain algebraic lattice structure and consist of
adding neural values and their synaptic strengths followed by forming the maximum (V) or, dually, the minimum
(A) of the results. For the purposes of this paper, it suffices to consider operations in the substructure (R, V,A,+).

Several popular models of associative memories allow for a formulation in terms of matrices.**73 The model
of associative memories described in this paper employs products of matrices which are defined in the algebraic
structure of minimax algebra. Two types of matrix products exist in minimax algebra. For an m x p matrix A and a
p X n matrix B with entries from R, the matrix C = A @ B, also called the maz product of A and B, and the matrix
D = A® B, also called the min product of A and B, are defined by

P

P
cij = V((lik +byj), dij = /\(aik + b)) - (1)
k=1 k=1

The algebraic structure (R,V,A,+) provides for an elegant duality between matrix operations. For any real-
valued m x n matrix A, we define the conjugate matriz A* of A as the n x m matrix A* = —A’, where A’ is the
transpose of A. It follows that

(AAB)*=A'VB and (AmB)"'=B"m A" (2)

The maximum and the minimum of two matrices occurring in Equation 2 are performed elementwise. Equation
2 implies that every statement about morphological neural networks induces a dual statement which simply arises
by replacing each A symbol with a V symbol and vice versa, and by reversing each inequality. As an example, the
reader may find two true statements of minimax algebra in Equation 3 and the corresponding dual statements in
Equation 4 below.

(AMB)V(ABC)= AR (BVC), AB(BAC)< (AMB)A(ARC) YA € R™*"* VB,C € R***. (3)
(AnB)A(ABC)=Am(BAC), AB(BVC)>(AnB)V(ABC) YA € R"™ ", VB,C € R*™*, (4)

3. INTRODUCTION TO MORPHOLOGICAL ASSOCIATIVE MEMORIES

An associative memory is an input-output system that describes a relation R C R™ xR". If (x,y) € R, i.e. if the
input x produces the output y, then the associative memory is said to store or record the memory association (x,y).
There are two basic approaches to record k vector pairs (x!,y!), ..., (x¥,y*), using a morphological associative
memory. The first approach consists of constructing an m x n matrix Wxy as Wxy =Y @@ X*. The second, dual
approach consists of constructing an m X n matrix Mxy- of the form Mxy =Y & X~. If the matrix Wxy receives
a vector x as input, the product Wy & x is formed. Dually, if the matrix Mxy receives a vector x as input, the
product Myy @ x is formed. As the reader may have already noticed, there are surprising similarities between the
morphological associative memories described above and the linear associative memory.*

IfX =Y (ie,y¢ =x¢ for £ =1, ..., k), we obtain the autoassociative morphological memories (AMMs) Wy x
and My y. In this special case, the recording scheme incorporated into Wy x, Mxx respectively, reminds of the
recording scheme used for the synthesis of a Hopfield net.3

6 Proc. SPIE Vol. 4120



Example.

13 0 1 =3
X = 0 -1 , Wyy = -4 0 —4 MNyyBX=X=Myx@m X. (5)
4 1 -2 2 0

Two fundamental theorems on MAMSs have been established which are concerned with necessary and sufficient
conditions for perfect recall of uncorrupted and corrupted patterns. The first theorem answers the existence question
of perfect recall for sets of pattern pairs. The second theorem provides bounds for the amount of distortion of the
exemplar patterns x¢ for which perfect recall can be assured. Theorems 1 and 2 represent an important corollaries
concerning autoassociative morphological memories which are far easier to state than the original theorems.

Theorem 1. The following statement holds for all X' € R":
Wyy8B X =XNand Myx@B X =X . (G)

In other words, the absolute storage capacity of AMMs is unlimited.

Definition. We say that distorted version x of the pattern x has undergone an erosive change or that X is an
eroded version of x whenever X < x and a dilative change or that X is a dilated version of x whenever x > x.
Theorem 2. If Wyy 8 X” = x” then XY must be an eroded version of x”. Similarly, if Mxx @ XY = x” then X°
must be a dilated version of x7.

Suppose that x!, ... , x* are "well-structured” patterns with k relatively small compared to n. We recently made

the observation that Wx x is very robust in recalling patterns that are distorted by erosive noise and that My y is
very robust in recalling patterns that are distorted by dilative noise.!”

Example. Let X be the matrix whose columns correspond to the letter images of Figure 1. Specifically, consider
the ten images p!, ..., p!° shown in Figure 1 (numbered from left to right and from top to bottom). Using the
standard row-scan method, each pattern image pé can be converted into a pattern vector xé = (:r?, AN :1:324) by
defining

. _J1 if pt (i,7) =1 (= black pizel)

18(i—1)+j 0 if p¢(i,j) =0 (= white pizel).
We used the ten pattern vectors (x!, ..., x'°) in constructing the morphological memories Wx x and Mxx. As
expected each individual pattern vector x¢ was perfectly recalled in a single application of either Wxx or My x.

The same ten patterns served as bipolar inputs to a discrete Hopfield net. Due to the considerable amount of overlap
between the patterns, the Hopfield net failed to recall any of the patterns.

ABLCXE
0 b C X E

Figure 1.
The ten patterns used in constructing Wx x and My x. The output of Wy x and the output of My x is identical to
the input pattern.

We conducted the experiments described in Figure 2 and in Table 1. We created eroded versions X of some x7,
computed Wy x & X?, and compared the results with x?.
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Figure 2.
Examples of corrupted input patterns which were perfectly recalled as the letter image ”X” by the morphological
memory Wx x (X consists of the patterns shown in Figure 1).

letter PA” | 7a” | "B” | "b” | "C” | *¢” | "X | "x” | "E” | Ve
p=0.11] 100 | 8 | 100 | 99 | 100 | 89 | 100 | 90 | 100 | 96
p=02] 96 63 | 100 [ 97 | 100 | 75 96 81 | 100 | 92
p=03] 92 42 | 100 | 94 | 100 | 64 87 69 99 | 88

Table 2:
Experimental results after random elimination of black pixels with probablity p. The table shows the number of
images in a sample of 100 images which were perfectly recalled in an application of Wx x .

4. REVIEW OF THE KERNEL METHOD

The previous section indicates that morphological associative memories outperform ”conventional” associative
memories such as correlation recording and the Hopfield net in many aspects. In fact, the morphological associative
memory model reveals almost all the desired general characteristics of an associative memory with one notable
exception: the network’s inability to deal with patterns which include erosive and dilative noise at the same time.

The memory Wy x is suitable for application to patterns containing erosive noise and the memory Mx yx is suitable
for application to patterns containing dilative noise. Therefore, an intuitive idea to process noisy versions X of x”
containing both erosive and dilative changes is to use a combination of Wx x and My x. Specifically, the output of
My x B X" is multiplied (using &) by Wxx or, dually, the output of Wx x @ X7 is multiplied (using @) by My x.
The reasons why this approach fails will become evident in view of the results on fixed points and their basins of
attraction which we provide in the next section.

Inspite of these difficulties, a modified approach can be applied to create a morphological associative recall memory
that is robust in the presence of random noise (i.e. both dilative and erosive noise), even in the general situation when
X #Y and X and Y are not boolean. A memory M is defined as a memory which associates each input pattern x¢
with an intermediate pattern z¢. Furthermore, a memory W is defined such that each pattern z¢ is associated with
the corresponding output pattern y%. In other words, we obtain the following equations:

WeMaxt)=Wmzt =yt (7N

Under certain conditions depending on Z , the matrix Mzz can serve as M and the matrix Wy can serve as .
In this case, the n x k matrix Z = (z!,2>,...,2") is called a kernel for (X,Y"). Furthermore, for properly chosen
vectors z¢, we also have Mzz B %¢ = z¢ for most corrupted versions ¢ of x¢.

For all practical purposes, the vectors z¢ can be thought of as sparse representations of x¢, i.e. z¢ are binary
vectors such that z¢ < z¢ and such that 3), z¢ is small. Let us recall the formal definition of a kernel below.
Definition. An n x k matrix Z = (z*,2?,...,2") is called a kernel for (X,Y") if and only if the following two
conditions are satisfied: :

1. Mzzm X =Z.
2. WzymZ =Y.
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Given a particular problem of associating binary patterns x¢ with binary pattern y®, the kernel with respect
to (X,Y") can be easily chosen by means of Theorem 3 below. Given a collection of kernel vectors whose choice is
based on Theorem 3. The subsequent theorem determines the amount of corruption of the input patterns which
is admissible in order to maintain perfect recall. In other words, givén a corrupted version X” of x7, under what
conditions is

Wzy @ (Mzz@mx") =y". (8)

Theorem 3. Let X,Y, Z be binary patterns with Z < X. If

z'Az8 =0 and 20 £ x5 V7,8 v #¢E (9)

then Z is a kernel for (X,Y).

Theorem 4. If Z is a kernel for (X,Y") satisfying the conditions 9 then w+ have perfect recall for a distorted
version X of x7, in other words Wzy & (Mzz BX7) =y7, if

g 7 P (10)

Figure 3.
An applicatiom off the keruel method, Each letter was corrupted by randomly reversing each bit with a probability
of 0.15. The assorciative memaors {input — Mzz = Wyy — output} was trained using the ten exemplars shown
in Figure 1. Paesenting the memory with the corrupted patterns of the letters A, B, and X resulted in perfect recall
(Tov ~r row).

5. FIXED POINTS . e oo IMs A i THEIR L .53 OF ATTRACTION
One of the desired characteristics of an autoassociative memory is recall of the original patterns. In other words,
every original pattern x¢ should be a fixed point for every given set of patterns x!, ... , x* with respect to a renewed

application of tthe memory. Fixed points of AMMs are defined as follows.

Definition. A vector x € R" is called a fized point of Wx x if and only if Wxy 8 x = x. Similarly, x is a fixed
point of Mxx if and only if Mxy B x = x.

Ideally, an @utoassociative memory only has the fundamental memories x!, ... , x* and possibly a no-decision or
ground state ass fixed points. Let S(Wxx) denote the set of fixed points of Wx x and let S(Mxx) denote the set of
fixed points of Afyyx. By Theorem 1, both S(Wxx) and S(Mxx) include the original patterns. Experimentation
reveals that ap:art from the fundamental memories various other fixed points exist.

The questiown arises as to what are the other elements of S(Wx x) and S(Mxx). The following theorem'? provides
some insight insto this matter. : '
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Theorem 5. For every z € R", the pattern Wy x & z is a fixed point of Wy x and the pattern Mxx & z is a fixed
point of My y

By Theorem 5, the set of all stable states can be found by probing Wy x and Mx x with every z € R". Of course,
this is a daunting task - even for the example above. Nevertheless, this method helped us to create the fixed points

v, ¥?, and y? below.
H (=2

Figure 4.
Images corresponding to fixed points of Wx x and My x. Note that the first image represents the maximum of "X”
and "a”.

Upon closer examination, the reader may detect the identities y! = x?vx%, y*> = x! Ax?, and y® = (x* Ax7) vx°.
Further experimentation leads to the following hypothesis. A pattern y is a fixed point of Wy x ifand only if y = 1
or if y can be written as an expression involving only x!, ..., x!° and the symbols V, A. Theorem 6 will confirm
this hypothesis. Note that the condition Wxx € {—1,0}"*" and Mxx € {0,1}"*" is not stringent. The proof of
sufficiency part of Theorem 6 is given in.!! The proof of the other direction will appear in an upcoming article.
Definition. An expression involving only x!, ..., x* and the symbols V, A is called a lattice polynomial in

xt L, xk.

Theorem 6. Let X = {x!, ..., x*} € {0,1}"**. Suppose Wxx € {—1,0}"*" and Mxx € {0,1}"*". A pattern

y is a fixed point of Wxx if and only if y is a lattice polynomial in x!, ..., x* or y = 1. A pattern z is a fixed

point of My x if and only if z is a lattice polynomial in x!, ... , x* or z = 0.

The next theorem expresses the following fact: An application of Wy x to an arbitrary input pattern x produces

the fixed point y which is closest to x in terms of a certain measure of distance. Let us first introduce some convenient
notations.

For arbitrary x € R", the symbol X denotes the least upper bound (Lu.b) of x in S(Wxx) U {1}, i.e. the
-smallest element y of S(Wxx)U {1} such that y > x. Similarly, X denotes the greatest lower bound (g¢.l.b) of x in
S(Mxx)U {0}, i.e. the largest element z of S(Mxx) U {0} such that z < x.

Theorem 7. The following equalities are satisfied for all X € R*** and x € R™.
Wxx®Bx=x and Myy@x=X. (11)

In other words, X acts as an attractor state for x when using Wx x and X acts as an attractor state for x when using
Mxx.

Proof. The matrix Wy x has a zero diagbnal by construction. Therefore, Wy x 8 x > x for all x. Since x < x,

x<WxxBx<WxxEx=x%. (12)

The pattern Wy x & x is a fixed point of Wx x according to Theorem 5. Since X is the smallest fixed point greater
than or equal to x, Wx x 8 x must be x.

6. ELIMINATION OF SPURIOUS MEMORIES

In the previous section, we established necessary and sufficient conditions for fixed points of Wx x and My x.
Moreover, for every fixed point, we identified the corresponding basin of attraction. We characterized the set of fixed
points of Wx x, Mx x respectively, as the set of lattice polynomials in x!, ..., x*. Note that every lattice polinomial
in x!, ..., x* can be written in conjuntive normal form, i.e. as an expression of the form
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