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Preface

Those who fall in love with practice without science are
like a sailor who enters a ship without helm or compass,
and who never can be certain whither he is going.

LEONARDO DA VINCI

In view of the fact that there is an abundance of excellent textbooks and mono-
grap}xs already on the market, it takes some special motivation of purpose, if not
presumptuousness, to write yet another book on quantum theory. In the present
asse, the motivation was to fill a need of graduate students in theoretical physics
that became apparent to me while teaching intermediate and advanced topics in
quantum theory, during the last ten years or so, at universities in Europe, England,
and the United States of America. I observed that there is dire need for a text
which, although incomplete in many ways, is unified in style and presentation and
could lead the student, in a gentle manner, from the realm of basic quantum me-
chanics (in which he already acquired a working knowledge) to the peaks of present-
day research methods and concepts. While it is possible to cover every single step
of this process by the appropriate chapter of one or more well-known textbooks,

‘I came to feel that a single v‘olume, concentrating on ideas and basic methods,
would serve a legitimate purpose.

After this statement of purpose, I feel that the title of this book needs some
explanation. It is not easy to define the vague epithet ‘‘advanced.” Certainly I
did not imply thereby a kind of ‘“highbrow”’ treatment, nor did I mean to indicate
‘that, after having worked through this book, the student will have become a person
with advanced experience or knowledge. All I wanted to convey was that this
book is meant to be used in the so-called advanced graduate courses on quantum
theory, and should prepare the student for further studies in genuinely advanced
special topics, such as relativistic quantum field theory, theory of elementary
particles, or the many-body problem.

The other, less conspicuous, word in the title, viz., the use of the term quantum
theory rather than quantum mechanics, serves to emphasize that the treatment
‘was kept as general as possible, covering not only quantized systems with a mechan-
ical analog but also any system of.the micro-world. Special attention has been paid
to quantized fields, although for very good reasons relativistic quantum field theory
has been completely omitted. On the other hand, the rudiments of relativistic

v
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quantum mechanics have been included (Chapter 2 and Appendix 3), since I felt
that a first acquaintance with the nonquantized Klein-Gordon and Dirac equations
are both desirable and feasible at this stage of study.

In view of the detailed Table of Contents, it appears unnecessary to review here
the contents of this treatise. The only remark I wish to make is that the four
Appendices, although purely mathematical in nature and rather sketchy, form an
essential part of the text. In particular, I felt it worthwhile to make Appendix 2
(on the elements of group theory) more extensive than is actually demanded for
the understanding of the main text. It should also be pointed out that at the end
of each chapter, the reader will find a brief résumé which serves to put the frag-
ments of acquired knowledge into proper perspective.

Since the topics covered in advanced quantum theory courses vary considerably
from school to school, it is clear that no unique choice of subject material could
be made. For similar reasons, certain topics which are often treated in lower-level
courses have also been included, because a somewhat more critical and systematic
review of some superficially familiar subjects can be a great advantage to many
students. {

It is obviously impossible to cover this text in a one-year course. There are,
however, two possible ways for using this book as a textbook. In some schools,
the stage has been reached when two full years of intermediate and advanceds- ~
quantum theory are offered, followed or paralleled by special, highly advanced
topics. It is hoped that the number of such institutions is increasing. In the
majority of universities, where there is time for only one year of study in this
field, the lecturer will be able to select the appropriate topics of his own prefer-
ence; this can be done in several different ways. Tinally, some sections, such as
those covering the elements of dispersion relation techniques (Chapter 3, Sections
3-4 and 3-5c; Chapter 4, Sections 4—4e and 4-4f) or those concerned with the
rudiments of the many-body problem (Chapter 4, Section 4-6), can be used also
as introductory material to highly specialized courses and can be given after the
general advanced quantum theory sequence.

It is often said, and quite rightly, that the complete understanding of a subject
cannot be achieved without applying it. Carrying this reasoning beyond its limits,
one sometimes hears that “things are learned through their applications.” In my
opinion, this is an oversimplification of the complicated process of learning. Enter-
ing a new world, we must first get familiarized with the overall features of the
landscape, draw a map, and learn about the riches of the country before we can
start exploiting them. Likewise, I feel, many young would-be scientists are misled
by a premature rush into applications before completing a systematic survey of
the field and an adequate assimilation of the fundamental ideas and methodology.
Physics, unlike agriculture, plumbing, or even engineering at its very best, is not
merely a professional activity. In bygone days, physics was often referred to as
“natural philosophy.” Physics has been the product of the ever-searching, rest-
lessly enquiring, wondering human mind, the outcome of a longing for understand-
ing and appreciating the world we live in. It is this aspect of physics which, in this
book, I tried to stress most. The young student of today is only too often bewildered
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by and lost in abundance of detail, and I feel that a review from well-chosen vantage
points is badly needed for his real progress. Experience shows that a large majority
of students greatly welcomes a thorough explanation of what is often called “the
formalism,” and they find that after having mastered this formalism, then and
only then will they be able to individually work their way through the host of
nontrivial applications of the formalism.

But there is a solid bridge between the formalism and applied research based
on it. The arches of this bridge are spanned by exercises of varying degrees of
difficulty, and it is for this reason that a sizable number of problems have been
added to each chapter. These problems form an intrinsic and absolutely essential
part of the text, and the student is seriously urged to solve as many problems as
his time permits—and more. The problems are all straightforward and never go
beyond the framework of this book; no extra reading or referencing is needed for
their solution. In some cases, the problems contain ramifications of the text,
extensions of topics dealt with in the corresponding chapter, and new theorems or
methods.

Finally, I feel obliged to comment on the system of giving references, or rather,
on the lack of systematic referencing. To do justice even to the most important
coritributions to quantum theory would have necessitated the addition of a volume
of its own. I therefore restricted myself to give, at the end of each chapter, a
“rather short list of references, consisting of current textbooks, monographs, and
reviews. These references serve only to advise the reader from which sources he
could fill in gaps of his previous knowledge and where he could turn for further
reading. Occasionally, when a proof was skipped or the discussion, out of neces-
sity was brief, I included a reference in a footnote.

If a substantial fraction of users of this book feel that it helped them to over-
come difficulties of understanding and enlarged their outlook; the purpose of this
work will have been fulfilled. I would greatly appreciate any comments and
rectifications, including even correction of misprints.

I am obliged to several colleagues and students of mine who helped me in clarify-
ing my own ideas. I am also obliged to the U.S. Air Force Office of Scientific
Research for continuing grants during the long period of writing this book and
thus graciously tolerating a considerably reduced research output on my side.
Foremost of all, whether or not it be commonplace to say, I am grateful to my
wife, Cordula, for the understanding and patience that she demonstrated during
the strained years of writing this book.

Boston, M assachusetts : P.He
May 1964
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CHAPTER 1

Description of
Quantized Systems

Quantum theory is a self-contained physical discipline aiming at the appropriate
formulation of the basic laws that govern the behavior of the microworld. It is
concerned with the description of the properties and behavior of elementary
particles, atomic nuclei, atoms, molecules, and possibly somewhat bigger atomic
systems, such as crystals. T2 AVE S 5
The phenomena of the macroworld, i.e., those of extended, massive bodies with
a complicated structure, are the outcome of averages taken over an enormous
number of basic microphenomena. Therefore, many properties of the microworld
may be lost when we observe only the macroworld: the laws of macrophysics
appeat as approximations of the microscopic laws if applied to a very big number
of individual processes. Thus, the laws of microphysics, i.e., quantum theory,
must be based on a set of axioms (or postulates), which cannot be derived from the
laws of the macroworld (i.e., from Newton’s laws of motion and Maxwell’s equa-
tions). Instead these axioms can be established and tested only by experiments
which refer directly to microphenomena. These basic laws of the microworld have
_ been discovered and developed, by trial and error, roughly speaking during the
period from 1900-1930.
We assume that the reader is already familiar with the most important features
and basic applications of quantum theory and has also achieved some versatility
- in performing quantum-mechanical calculations. Therefore, in this first chapter,
we endeavor to present only a concise, but sufficiently deep, picture of the complete
conceptual framework on which the theory is firmly based. We believe that the
clearest understanding and most transparent view of this magnificent edifice is
obtained by a more or less axiomatic presentation of the concepts and basic laws
with which, in one form or another, the reader has already had some contact.
We by no means claim that the “postulates” set forth below are (in the terminology
of axiomatics) “nonreducible” or “complete,” but we hope that they will facilitate
a thorough understanding of the structure of quantum theory. For a more rigorous
treatment, both mathematical and physical, the reader is referred to some of the
classic books listed in the references.

~ The most appropriate mathematical language for the formulation of the frame-
work of quantum theory is provided by that of linear algebra. 'The basic notions

3



4 DESCRIPTION OF QUANTIZED SYSTEMS [1-1

of this powerful mathematical discipline, including the fundamentals of Hilbert
space theory, are summarized in Appendix 1. We emphatically recommend that
the reader first study the appendix thoroughly before turning to the main body
of the book. This preliminary mathematical study will certainly not be a waste
of time, if, for no other reason, than that it will make the reader familiar with
our notation and terminology.

1-1 PHYSICAL OBSERVABLES

Quavntitigs of fundamental importance in any physical theory are the observ-
ables of the system, i.e., entities which, in principle at least, can be measured on
the system by a suitable and reproducible device. Our first postulate sets, so to
speak, the tone of the quantum-mechanical language and states that:

. M {
Postulate I. All observable physical quantities correspond to Hermitian
operators. The only measurable values of a physical observable are the various
eigmvalyes of the corresponding operator. Vi W

In order to understand the contents of this axiom, we recall that in classical
(macroscopic) physics the physical observables of a system correspond to func-
tions of some ba,sic'va.);jg,bles.f_gThe measured values of an observable in classical
physics are the numerical valies taken on by the corresponding function. In
contrast, in quantum theory, the observables are associated with operators which
act on the state of the system. [The state of a qhahtum—méchﬁxﬁ'c‘é‘l system will
be introduced and specified by Postulates III(a) and III(b) below.] Thus the
concept of an observable is more closely related to the process of measurement
in quantum mechanics than it is in classical physics. We shall elaborate on this
later. ' AR

It is necessary that an operator be Hermitian in order for it to correspond to a
physical observable. Only this property ensures that all its eigenvalues are real,
as indeed they must be if, according to the sec[{ikd part of Postulate I, we wish to
identify the eigenvalues with the possible measured values. (All physical measure-
ments yield real numbers.) Furthermore, it will be necessary to restrict ourselves
to bounded Hermitian operators which have a complete set of eigenstates. (Con-
cerning the completeness concept, see Section Al-3, in particular p. 653.) In
the following we shall always assume that the operators corresponding to physical
observables satisfy these criteria.* .. |

Postulate I already contains the most remarkable feature of quantum physics,

namely that, in general, an observable physical quantity may not attain arbitrary, . .

- values. Because of the association of observed values with the eigenvalues of an
operator, only a certain “spectrum” of measurable values is allowed to occur.

* On the other hand, not every bounded Hermitian operator represents a physical observ-
able. This will be discussed in Section 1-4b in connection with superselection principles.
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In fact the eigenvalue spectrum of an operator is, in general, not continuous, or :
at least the spectrum contains a discrete part. Thus Postulate I expresses the
experimental fact of quantum levels. S1v0

The question now arises as to how one can find the operator which corre-
sponds to a certain physical observable. This problem is settled by Postulates
II(a) and II(b).

Postulate II(a). Any classical physical quantity must be considered to be
constructed from pairs of canon:igally conjugate, variables. The corresponding
quantum-mechanical opemtor"is then obtained by replacing the classical
canonical variables by their corresponding quantum-mechanical operators.*t
It is important to set out pr‘e‘cis‘ély what is meant by canonically conjugate
variables. As is well known, classical physics can be formtilated in terms of a

%% variational principle. If we restrict ourselves, for simplicity, to mechanical mass-

point systems,} we denote the generalized coordinates (degrees of freedom) by
¢g:(¢=1,2,...,N). Thenwe define a Lagrangian L = L (gi, i, ) and an action
integral

W = / " L(gs, s, t) dt (1-1)
3%

such that the variational problem

s W =10 1-2)

e :
with respect to the‘q;- and with the boundary conditions dg; = 0 for ¢ and i,
yields the equations of motion (see Fig. 1-1a). It is known that the solution of

this problem is given by the Euler-Lagrange equations as

oL d oL

* If for the description of the system we also need variables that have no classical
counterpart (such as spin or isobaric spin) then, of course, Postulate II(a) is useless.
In these cases, we must rely on ad hoc methods or utilize symmetry properties and con-
servation rules to find the representing operator. Specific examples set forth in later
chapters will illuminate this point. b

1 In some cases, when obtaining the quantum analog of a classical observable by means
of replacing the classical canonical variables with their corresponding operators, special
care has to be exercised to ensure that the resulting operator be Hermitian. For example,
a term of the form pq is not Hermitian, because p and ¢ do not commute. In such cases,
the classical expression must first ‘be properly symmetrized in the canonical variables.
In the given example, instead of pg, we must write the expression 1/2(pq + qp), which
in classical theory is identical to pg. Therefore, when considering p and g as operators,
we now have a Hermitian term, irrespective of the commutation properties of p and g.

t Concerning fields, i.e., systems with infinite many degrees of freedom, cf. Section 1-7,
in particular 1-7e.
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Varied path

Actual path

} t } foe t
% 5 t+ot 4 L0

(a) (b)
Ficure 1-1

Y%
Now we want to perform a more general variation. Besides ¢;, we shall also
vary the time ¢, as well as the endpoints, ¢, and f,, of the “path.” In other words,

we perform the transformations (see Fig. 1-1b)
) = ¢ = @) + 8¢;, t—oV =1+ 8,
with arbitrary and indepgndent 8q; and ot, and we define

tatits

sW = f L(gs + 8qi, &i + 845, t + 8t) d(t + 8t) — [ L, §i, 1) dt.
ETH f

Then, as one can easily verify, retaining only terms.up to the first order, this
general variation of W comes out to be :

t2 N N ‘ t
oL d oL 5
i = 3 §1<£—a£>5q,dt+[;p1‘q,—H&]tl (1—4)

Here we have used the notation §g; for the complete change of.the coordinates in
the endpoints, that is,

3gi = qi(t + 8t) — qi(®) = ¢i(t) — @) + ¢ 8 = 8¢i + ¢i dL. (1-5)

Further, for brevity, we have defined

i ok

p‘- = a—q_' ) (1_53)

N
H=) pgi — L (1-5b)
=1
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The first term in (1-4) vanishes due to the equations of motion (1-3), so that

N t3
oW = [Z pidg; — H “]u' (1-6)

=1

We now use this general variation of the action integral to define the canonically
conjugate pairs of variables.\"We agree to call the coefficient in (1-6) of the varia-
tion of any variable the canonically conjugate variable. “'Thus the canonically
conjugate variable associated with the generalized coordinate ¢; is p; (defined
by 1-5a) and the canonical conjugate variable to the time ¢ is the function —H
(defined by 1-5b). Here H is called the Hamiltonian. M

One can easily find that if the mechanical system is- conservative ‘and if we
choose ¢; = x;, where the z;’s denote ordinary Cartesian coordinates, then

N pg :
pi=m;, H=7, om T V@),
=1

where m is the mass and V the potential energy. However if we use appropriate
angle variables for generalized coordinates, then their corresponding canonical
conjugates are found to be the components of angular momentum.

The above definition of canonically conjugate variables is extremely useful
when we have to deal with systems which have é.ggl; ard generalized coordinates.
Even more important is the fact that this variational method of introducing canon-
ically conjugate variables can very easily be extended to cover systems with
infinitely many degrees of freedom, i.e., physical fields. In Section 1-7 we shall
have occasion to see in detail how the canonical theory works for quantized fields;
but, of course, all the material which will be discussed presently is equally valid
for point-mechanical systems and fields. S

Once the appropriate canonically conjugate: pairs of variables have been intro-
duced, then the equations of motion may be recast into the form of Hamilton’s
equations, c oy ﬁ i 6_1{ . o

get= apk’ P = aqr

The simplest way to derive these equations is first to write formally

N
oH oH
8H = 21(5 aqi+51,—iapi),

and then, using the definition (1-5b) and utilizing the equations of motion (1-3),
to compute explicitly 6H; and finally, to identify the coefficients of é¢; and ép;
respectively.

For further applications, we now point out an interesting property of the general
variation 8W of the action integral. If we set

N
F() = pide: — Hat, (1-8)

=1



