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1, INTRODUCTION

Why Geometry? ’

One may.ask why geometry, in particular differential geometry,
is useful for statistics. The reason seems very simple and strong.
A statistical model is a set of probability distributions to which
we believe the true distribution belongs. It isla subset of all the
possible probability distributions. In particular, a parametric
model usually forms a finite-dimensional manifold imbedded in the
set of all the possible probability distributions. For example a
normal model consists of the probability distributions N(u, 02)
barametrized by two parameters (u, o). The noéﬁal model M = {N(u,
02)} forms a two-dimensional manifold with coordinates u and g, and
is imbedded in the set S = {p(x)} of all the regular probability
distributions of a random variable x. One often uses a statistical
model to carry out statistical inference, assuming that the true
distribution is included in the model. However, a model is merely a
hypothesis. The trué distribution ﬁay not be in the model but be
only close to it. bTherefore, in order to evaluate statistical
inference procedures, it is important to know what part the
statistical model occupies in the entire set of probability
distrubutions and what shape the stati;tical model has in the entire
set. This is the problem of geometry of statistical models. It is
therefore expected that a fundamental role is played in statistics
by the geometrical quantities such as the distance or divergence of
two probability diétributions, the flatness or curvature of a
statistical model, etc. However, it is by ho means a trivial task
to define such geometrical structures in a natural and invariant
manner.,

Statistical inference can be carried out more and more

precisely as the number of observations increases, so that one can



construct a universal asymptotic theory of statistical inference in
the regular case. Since the estimated probability distribution lies
very close to the true distribution in this case, it is sufficient
when evaluating statistical procedures to take account of only the
local structure of the modél in a small neighborhood of the true or
estimated distribution. Hence, one can locally linearize the model
at the true or estimated distribution, even if the model is curved
in the entire set. Geometrically, this local linearization is an
approximation to the manifold by the t&ngent space at a point.  The
tangent space has a natu7al inner product (Riemannian metric) given
by the Fisher information matrix. From the geometrical point of
view, one may' say that the asymptotic theory of statistical
inference has indeed been constructed by using the linear geometry
of tangent spaces of a statistical model, even if it has not been

explicitly stated.

Local 1linearization accounts only ggr/Tﬁcal properties of a
model. ' In order to elucidates larger-scale properties of a model,

one needs to _introduce mutual relations of two different tangent
spaces ai two neighboring points in the model. This can be done by
defiﬂing an afgine correspondence between two tangent spacés at
neighboring points. This ie a standard technique of differential
geometry and the correspondence is called an affine connection. By
an affine connection, one can study‘local non-linear properties,
such as curvature, of a model beyond linear approximation. This
suggests that a higher-order asymptotic theory can naturally be
constructed in the framework of differential geometry. Moreover,
one can obtain global properties of a model by connectiong tangent
spaces at various points. These considerafions show the usefulnes§
and validity of the differential-geometrical approach to statistics.
Although the present monograph treats mainly the higher-order

asymptotic theory of statistical inference, the



differential-geometrical method is wuseful for more general
statistical anlyses. It seems rather surprising that few theories
have so far been developed concerning geometrical properties of a

family of probability distributions.

Historical Remark

It was Rao (1945), in his early twenties, who first noticed the
importance of the differential-geometrical approach. He introduced
the Riemannian metric in a statistical manifold by using the Fisher
information matrix and calculated the geodesic distances between two
distributions for various statistical models. This theory made an
impact and not a few researchers have tried to construct a theory
along this Riemannian line. Jeffreys also remarked the Riemannian
distance (Jeffreys, 1948) and the invariant prior of Jeffreys (1946)
was based on the Riemannian concept. The properties of the
Riemannian manifold of a statistical model have further been studied
by a number of researchers independently, e.g., Amari (1968), James

: (1573), Atkinson and Mitchell (1981), Dawid (1977), Akin (1979),
Kass (1980), Skovgaard (1984), etc. Amari's unpublished results
(1959) indyced a number of researches in Japan; Yoshizawa (1971a,
b), Takiyama (1974), Ozeki (1971), Sato et al. (1979); Ingarden et
al. (1979), etc. Nevertheless, the statistical implications of the
Riemannian curvature of a model did not become clear, Some
additional concepts seemed necessary for proving the usefulness of
the geometrical approach.

It was an isolated work by Chentsov (1972) in a Russian book
(translated in English in 1982) and in some papers prior to the book
that developed a new concept on statistical manifolds. He
introduced a family of affine connections in a statistical manifold,
whereas only the Riemannian (Levi-Civita) connection was used in thg

above works. He also proved that the Fisher information and these



affine connections are unique in the manifold of probability
distributions on a finite number of atoms. He proved this from the
point of view of the categorical invariance, by considering a
category whose objects are multinomial distributions and whose
morphisms are Markovian mappings between them. His theory is deep
and fundamental, and he elucidates the geometrical structures of the
exponential family. However, he did not remark the curv’atufe of a
statistical manifola, which plays aicentral role in the higher-order
asymptotic theory of statistical inference.

It was Efron (1975, 1978) who opened a new idea independently
of vae work. He defined the statistical curvature of a
statis::mal model and pointed out that the statistical curvature
plaﬁ a fundamental role in the higer-order asymptotlc theory of
statistical inference. Although he did not introduce an affine
connection explicitly, a new affine connection (exponential
connection) was introduced implicitly in his theory, as was
elucidated by Dawid (1975). Dawid also suggested the possibility of
mtroducing another affine connection (mixture connectlon) Efron's
idea was generalized by Madsen (1979); see also Reads (1975).

Under the strong influence of Efron's paper and Dawid's
suggestion, Amari (1980, 1982a) introduced a one-parameter family of
affine connections (a-connections), which turned out to be
equivalent to those Chentsov had already defined. Amari further

\proposed a differential-geometrical framework for constructing a
higher-order asymptotic theory of statistical inference. He,
,‘defining the a-curvature of a submanifold, pointed out important
. roles of the exponential and mixture curvatures and their duality in
v acaﬁistical inference. Being stimulated b;r this framework, a number‘
wof i)apers appeared, e. g.‘ Amari (1982b, 1983a, b), Amari and Kumon
(1983), Kumon and Amari (1983, 1984, 1985), Eguchi (1983', 1984); see
also Wei and Tsai (1983), Kass (1984). The theoretical background



was further deepened by Nagaoka and Aﬁari (1982), where the
dualistic 'v.iewpoint was refined and some new geometrical concep‘ts
were introduced. Here statistcs contributes to differential
geometry.

Professors D. R. Cox, O. E. Barndorff-Nielsen and D.V. Hinkley
organized a NATO, Advanced Workshop on Differential Geometry in’
Statistical Inference in April, 1984 in London. More than forty ;
researchers partibibatéd, and stimulating discussions took place
concerning the present achievement by and future prospects for the
differential-geometrical method in statistics.. New directions of
developmemjé were shown, e. g. by Amari (1984 a), Barndorff-
Nielsen(1984), Lauritzen(1984), etc. I believe that the differential
geometrical method will become established as one of the main and

indispensable theoretical methods in statistics.

Organization of the Monograph

Part I treats fundamental geomeft\rical properties of parametric
families of prdbability di‘stributions;\.‘ We define in Chapter 2 the
basic qua‘/ntities of a statistical manifold, such as the Riemannian
metr;gc. the a-affine connection, the a-curvature of a submanifold,
etc. ‘This chapter also provides a good introduction to differential
geometry, so that one can read the Monogr'aph without any prior
knowle&ge on differential geometry. The explanation is 4rather
intuitive,  and unnecessary rigorous treatments are avoided, The
‘reader is asked to refer to Kobayashi and Nomizu (1963, 1969)A or any
other textbooks for the modern approach to differential geometry,
and to Schouten (1954) for the old tensorial style of notations.
Chapter 3 presents an advanced theory of differential geometry of.
statistical manifolds. A pair of dual connections are introduced ir
a differentiable manifold with a Riemannian metric. The dualistic

characteristics of an o-flat manifold are especially interesting..



We can define én a-divergence measure between two probability
distributions in an a-flat manifold, which fits well to the
differential geometrical structures. The Kullback-Leibler
iﬁformation, the Chernoff distance, the f-divergence of Céiszér, the
Hellinger distance etc. are all included in this class of
a-divergences. This chapter is based m;inly on Nagaoka aﬁd Amari
(1982), which unifies the geometry of Csiszdr (1967a,b; 1975) and
that of Chentsov (1972) and Amari (1982a). This type of the duality
theory caﬁnot be found in any differential geometfy literature.

Part II is devoted to the higher-order asymptotic theory of
statistical inference in‘ the framework of a curved exponential
family. We present the fundamental method of approach in Chapter 4,
by decomposing the minimal sufficient statistic into the sum of an
asymptdtically sufficient aﬁd asymptotically ancillary statistics in
the tangent space of a model. The Edgeworth expansion of their
joint probability distribution is explicitly given in geometrical
terms up to the term of order }[N, where N is the number of
observations., Chapter 5 is devoted to the theory of estimation,
where both the exponential and mixture curvatures play important
roles. Chapter 6 treats the theory of statistical tests. We
calculate the power functions of various efficient tests such as the
Wald test, the Rao test (efficient score test), the likelihood ratio
test, etc., up to:the term of order 1/N. The characteristi?“of
various first-order efficient tests are compared. Chapter 7 treats
more basic structures concerning information such as higher-order
asymptoéic sufficiency and ancillarity. Conditional inference is
studied from the geometrical point of view. The rglftion between
the Fisher information and higher-order cﬁrvatutes is e1uci§gted.
Chapter 8 treats statistical inference in the presence of nuiQAﬁEe
par7meters. The mixturé4 and exponential curvatures again play

important roles.



It was not possible to include in this volume the newly
developing topics such as those presented and discussed at the NATO
Workshop. See, e.g., Barndorff-Nielsen (1984), Lauritzen (1984) and
Amari (1984 a), which together will appear as a volume of the IMS
Mono;raph-Series, and the papers by R.E. Kass, C.L.Tsai, etc. See
also Kumon and Amari (1984), Amari and Kumon (1985), Amari (1984 c).
The differential-geometrical method developed in statistics is also
applicable to other fields of sciences such as information theory
and systems theory (Amari, 1983 c, 1984 b). See Ingarden (1981) and
Caianiello (198}) for applications to physics. They together wili

open a new field, which I would like to call information.geometry.

Personal Remarks .
i ﬁwas in 1959, while I was studying for my Master's
Degree at tﬁe Uhiversity of Tokyo, that I became enchanted by the
idea of a b%autiful geometrical structure of a statistical model. I
was suggegted to consider the geometrical structure of the family
of normal distributions, wusing the Fisher information as a
Riemannian metric. This was Professor Rao's excellent idea proposed
in 1945, I found that the family of normal distributions forms a
Riemannian manifold of constant negative curvature, which is the
: Bolyai-Lobachevsky geometry Qell known in the theory of
non-Euclidean geometry. . My results on the geodesic, geodesic

distance and curvature appeared in an unpublished report. I could

T ;

not wunderstand the statistieal meanihg, of these results, in
particular the meaning of the Riemannian curvature of a statistical
manifold. Since then, I have been dreaming of constructing a
theory of differentgaf geometry for statistics, although my work has
been concentratgq in non-statistical areas, namely graph theory,,
continuum mechanics, information sciences, mathematical theory of

neural nets, and other aspects of mathematical engiﬁeering. It was



a paper by Professor Efron that awoke me from my dream and led me to
work enthuastically on constructing a differential-geometrical
theory of statistics. This Monograph is a result of several years

of endeavour by myself along this line.

Finally, I list up some problems which I have now interests in

and am now studying.

1. Extension of the geometric theory of statistical inference
such that it is applicable to a general regﬁlar parametric model
which ' is nét necessarily a curved exponential family. This
extension is possible by introducing the jet bundle which is an
aggregate of local exponential families. . Here, a local exponential
family is attached to each point of the model such that the original
model is locally (approximately) imbedded in the exponential family
at that point.

2. Extension of the present theory to the function space of
regular probability distributions. This enables us to comstruct a
geometrical theory of non-parametric, semi-parametric and robust
statistical inference.

3. The problem of estimating a structural parameter in the
presence of as many incidental parametere as the number ‘of
observations. Thie classical problem can be elucidated by
introducing a Hilbert bundle to the underlying statistical model,

4. Differential geometry of a statistical modei which
possesses an invariant transformation group. ' The structure of such
a model is highly related to the existence of an exact ancillary
statistics. v : .

‘5. Geometry of statistical models of discrete random variables
and categorical data analysis. :

a

6. Geometry of multivariate statistical analysis.



s Geometry of time-series analysis. Local and global
structures of parametric time-series models are interesting.
8. 'Differential-geometrical theory of systems.

b - Application of differential geometry to information theory,
‘cbding theory and the theory of fiow. We need to study geometrical
structures of a manifold of informatioﬁ‘sources (e.g., the manifold
of Markov' chains and the manifold of coders, which map the manifold
of all the information sources into itself. !

10. Geometry of non-regular statistical models. Asymptotic
properties of statistical inference in a non-regular model are
related to both the Finsler geometry and the theory of stable

distributions of degree a.
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PART I. GEOMETRICAL STRUCTURES OF A FAMILY
OF PROBABILITY DISTRIBUTIONS

2. DIFFERENTIAL GEOMETRY OF STATISTICAL MODELS

The present chapter is devoted to the introduction of
fundamental differential-geometrical structurés of
statistical models. The tangent space, the Riémannian
metric and the a-connections are introduced in a
statistical manifold. No differential-geometrical
background is required for reading this monograph, because
the present Eiapter provides a readable introduction to

= diﬁfefggfial geometry.

.

2.1. Manifold of statistical model

Statisticians often treat a parametrized family of probability
distributions as a statistical model. Let S = {p(x, 6)} be such a
statistical model, where x is a random variable belbnging to sample
space X, and p(x, 8) 1is the probability density function of x,
parametriied by 6, with respect to some common dominating measure P
on X. Here, 6 is a real n-dimensional parameter 6 = (el, 62, e
6™) belonging to some open subset @ of the n-dimensional real space
e For example, . the ﬁormal model is a ‘family of
probability distributions having the following density functions,

2
p(x, 6) = ,/7%; exp{- 37&2—&}
I

with the Lebesgue measure dP

where sample space X is the real R
%

dx and the parameter 6 is two-dimensional; we may put 6 = (61, 0



