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Preface

The increasing demand on ultra miniturized electronic devices for ever im-
proving performances has led to the necessity of a deep and detailed under-
standing of the mathematical theory of charge transport in semiconductors.
Because of their very short dimensions of charge transport, these devices must
be described in terms of the semiclassical Boltzmann equation coupled with
the Poisson equation (or some phenomenological consequences of these equa-
tions) because the standard approach, which is based on the celebrated drift-
diffusion equations, leads to very inaccurate results whenever the dimensions
of the devices approach the carrier mean free path.

In some cases, such as for very abrupt heterojunctions in which tunneling
occurs it is even necessary to resort to quantum transport models (e.g. the
Wigner-Boltzmann-Poisson system or equivalent descriptions).

These sophisticated physical models require an appropriate mathematical
framework for a proper understanding of their mathematical structure as well
as for the correct choice of the numerical algorithms employed for computa-
tional simulations.

The resulting mathematical problems have a broad spectrum of theoretical
and practical conceptually interesting aspects.

From the theoretical point of view, it is of paramount interest to investigate
wellposedness problems for the semiclassical Boltzmann equation (and also for
the quantum transport equation, although this is a much more difficult case).
Another problem of fundamental interest is that of the hydrodynamical limit
which one expects to be quite different from the Navier-Stokes-Fourier one,
since the collision operator is substantially different from the one in rarefied
gas case.

From the application viewpoint it is of great practical importance to study
efficient numerical algorithms for the numerical solution of the semiclassical
Boltzmann transport equation (e.g spherical harmonics expansions, Monte
Carlo method, method of moments, etc.) because such investigations could
have a great impact on the performance of industrial simulation codes for
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TCAD (Technology Computer Aided Design) in the microelectronics indus-
try.

The CIME summer course entitled MATHEMATICAL PROBLEMS
IN SEMICONDUCTOR PHYSICS dealt with this and related ques-
tions. It was addressed to researchers (either PhD students, young post-docs
or mature researchers from other areas of applied mathematics) with a strong
interest in a deep involvement in the mathematical aspects of the theory of
carrier transport in semiconductor devices.

The course took place in the period 15-22 July 1998 on the premises of the
Grand Hotel San Michele di Cetraro (Cosenza), located at a beach of astound-
ing beauty in the Magna Graecia part of southern Italy. The Hotel facilities
were more than adequate for an optimal functioning of the course. About 50
“students”, mainly from various parts of Europe, participated in the course.
At the end of the course, in the period 23-24 July 1998, a related workshop of
the European Union TMR (Training and Mobility of Researchers) on “Asymp-
totic Methods in Kinetic Theory” was held in the same place and several of
the participants stayed for both meetings. Furthermore the CIME course was
considered by the TMR as one of the regular training schools for the young
researchers belonging to the network.

The course developed as follows:

o W. Allegretto delivered 6 lectures on analytical and numerical problems
for the drift-diffusion equations and also on some recent results concerning
the electrothermal model. In particular he highlighted the relationship
with integrated sensor modeling and the relevant industrial applications,
inducing a considerable interest in the audience.

e F. Poupaud delivered 6 lectures on the rigorous derivation of the quan-
tum transport equation in semiconductors, utilizing recent developments
on Wigner measures introduced by Gérard, in order to obtain the semi-
classical limit. His lectures, in the French style of pure mathematics, were
very clear, comprehensive and of advanced formal rigour. The lectures were
particularly helpful to the young researchers with a strong background in
Analysis because they highlighted the analytical problems arising from the
rigorous treatment of the semiclassical limit.

e C. Ringhofer delivered 6 lectures which consisted of an overview of the
state of the art on the models and methods developed in order to study
the semiclassical Boltzmann equation for simulating semiconductor de-
vices. He started his lectures by recalling the fundamentals of semicon-
ductor physics then introduced the methods of asymptotic analysis in or-
der to obtain a hierarchy of models, including: drift-diffusion equations,
energy transport equations, hydrodynamical models (both classical and
quantum), spherical harmonics and other kinds of expansions. His lec-
tures provided comprehensive review of the modeling aspects of carrier
transport in semiconductors.
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d) D. Levermore delivered 6 lectures on the mathematical foundations and
applications of the moment methods. He presented in detail and depth the
concepts of exponential closures and of the principle of maximum entropy.
In his lectures he gave several physical examples of great interest arising
from rarefied gas dynamics, and pointed out how the method could also
be applied to the semiclassical Boltzmann equation. He highlighted the re-
lationships between the method of moments and the mathematical theory
of hyperbolic systems of conservation laws.

During the course several seminars on specialized topics were given by lead-
ing specialists. Of particular interest were these of P. Markowich (co-director
of the course) on the asymptotic limit for strong fieds, of P. Pietra on the
numerical solution of the quantum hydrodynamical model, of A. Jungel on
the entropy formulation of the energy transport model, of O. Muscato on the
Monte Carlo validation of hydrodynamical models, of C. Schmeiser on ex-
tended moment methods, of A. Arnold on the Wigner-Poisson system, and of
A. Marrocco on the mixed finite element discretization of the energy transport
model.

A. M. Anile

CIME’s activity is supported by:

Ministero dell’Universita Ricerca Scientifica e Tecnologica;
Consiglio Nazionale delle Ricerche; E.U. under the Training and Mobility of
Researchers Programme.
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Recent Developments in Hydrodynamical
Modeling of Semiconductors

A. M. Anile, G. Mascali and V. Romano

Dipartimento di Matematica e Informatica,

Universita di Catania

viale A. Doria 6 - 95125 Catania, Italy

anile@dmi.unict.it, mascali@dmi.unict.it, romano@dmai.unict.it

Summary. We present a review of recent developments in hydrodynamical mod-

eling of charge transport in semiconductors. We focus our attention on the models

for Si and GaAs based on the maximum entropy principle which, in the framework

of extended thermodynamics, leads to the definition of closed systems of moment

equations starting from the Boltzmann transport equation for semiconductors.
Both the theoretical and application issues are examined.

1 Introduction

Enhanced functional integration in modern electron devices requires an in-
creasingly accurate modeling of energy transport in semiconductors in order
to describe high-field phenomena such as hot electron propagation, impact
ionization and heat generation. In fact the standard drift-diffusion models
cannot cope with high-field phenomena since they do not comprise energy as
a dynamical variable.

Furthermore, for many applications in optoelectronics it is necessary to
describe the transient interaction of electromagnetic radiation with carriers in
complex semiconductor materials. Since the characteristic times are of order of
the electron momentum or energy flux relaxation times, some higher moments
of the carrier distribution function must be necessarily involved. These are the
main reasons why more general models have been sought which incorporate
energy as a dynamical variable and whose validity, at variance with the drift-
diffusion model, is not restricted to quasi-stationary situations.

These models are, loosely speaking, called hydrodynamical models and
they are usually derived by suitable truncation procedures, from the infi-
nite hierarchy of the moment equations of the Boltzmann transport equation.
However, most of these suffer from serious theoretical drawbacks due to the
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ad hoc treatment of the closure problem [1]. Recently, in the case of silicon
semiconductors, a moment approach has been introduced [2, 3] (see also [4] for
a complete review) in which the closure procedure is based on the maximum
entropy principle, while the conduction bands in the proximity of the local
minima are described by the Kane dispersion relation. Later on, [5, 6], the
same approach has been employed for GaAs. In this case both the I'-valley
and the four equivalent L-valleys have been considered. Therefore electrons in
the conduction band have been treated as a mixture of two fluids, one repre-
senting electrons in the I'-valley and the other electrons in the four equivalent
L-valleys.

Both in-the Si and in the GaAs case, the models comprise the balance
equations of electron density, energy density, velocity and energy flux. The
only difference is that for GaAs both electron populations are taken into
account. These equations are coupled to the Poisson equation for the electric
potential. Apart from the Poisson equation, the system is hyperbolic in the
physically relevant region of the field variables.

In this paper we present a general overview of the theory underlying hydro-
dynamical models. In particular we investigate in depth the closure problem
and present various applications both to bulk materials and to electron de-
vices.

The considerations and the results reported in the paper are exclusively
concerned with silicon and gallium arsenide.

2 General transport properties in semiconductors

Semiconductors are characterised by a sizable energy gap between the va-
lence and the conduction bands. Upon thermal excitation, electrons from the
valence band can jump to the conduction band leaving behind holes (in the
language of quasi-particles). Therefore the transport of charge is achieved both
through negatively charged (electrons) and positively charged (holes) carri-
ers. The conductivity is enhanced by doping the semiconductor with donor or
acceptor materials, which respectively increase the number of electrons in the
conduction band or that of holes in the valence band. Therefore it is clear why
the energy band structure plays a very important role in the determination of
the electrical properties of the material. The energy band structure of crys-
tals can be obtained at the cost of intensive numerical calculations (and also
semiphenomenologically) by the quantum theory of solids [7]. However, for
most applications, a simplified description, based on simple analytical mod-
els, is adopted to describe charge transport. In this paper we will be essentially
concerned with unipolar devices in which the current is due to electrons (semi-
conductors doped with donor materials). Electrons which mainly contribute
to the charge transport are those with energy in the neighborhoods of the
lowest conduction band minima, each neighborhood being called a valley. In
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silicon, there are six equivalent ellipsoidal valleys along the main crystallo-
graphic directions A at about 85 % from the center of the first Brilloiun zone,
near the X points, which, for this reason, are termed the X-valleys. In GaAs
there is an absolute minimum at the center of the Brillouin zone, the I'-point,
and local minima at the L-points along the A cristallographic orientations.

As mentioned above, in the simplified description employed, the energy
in each valley is represented by analytical approximations. Among these, the
most common are the parabolic and the Kane dispersion relation.

In the isotropic parabolic band approximation, the energy £4 of the A-
valley, measured from the bottom of the valley £4, has an expression similar
to that of a classical free particle

- hglkAF

Ealka) 2m*
‘A

(1)
In this approximation k4, the electron wave vector, is assumed to vary in all
R3, m? is the effective electron mass in the A-valley and h the reduced Planck
constant.
A more appropriate analytical approximation, which takes into account
the non-parabolicity at high energy, is given by the Kane dispersion relation
h2k?

Ea(ka) 1+ an€al(ka)] = — k e R, (2)
My

where a4 is the non parabolicity parameter.
The electron velocity v(k) ! in a generic band or valley depends on the
energy &£ by the relation

1
v(k) = 2 ViE.

Explicitly we get for parabolic band

. hk
Vi == =4 (3)
m

while in the approximation of the Kane dispersion relation

i hk'
o= — (4)
m* [1+ 2a€(k))
In the semiclassical kinetic approach the charge transport in semiconduc-
tors is described by the Boltzmann equation. For electrons in the conduction
band it reads

of .. Of eE of
'a_t'}_v (k>al‘l_ k 3k1_c[f] (5)

! the valley index has been omitted for simplicity
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where f(x,k,t) is the electron distribution function and C[f] represents the
effects due to scattering with phonons, impurities and with other electrons.
In a multivalley description one has to consider a transport equation for each
valley.

The electric field, E, is calculated by solving the Poisson equation for the
electric potential ¢

Ei = - aﬁlfi k] (6)

V(eVg) = —e(Ny — N_ —n), (7)

N, and N_.denote the donor and acceptor density respectively (which depend
only on the position), € the dielectric constant and n the electron number

density
n = / fdk.
.

The equations (5)-(7) constitute the Boltzmann-Poisson system that is the
basic semiclassical model of electron transport in semiconductors.

The main scattering mechanisms in a semiconductor are the electron-
phonon interaction, the interaction with impurities, the electron-electron scat-
terings and the interaction with stationary imperfections of the crystal as
vacancies, external and internal crystal boundaries. In many situations the
electron-electron collision term can be neglected since the electron density is
not too high. However in the case of high doping, electron-electron collisions
must be taken into account because they might produce sizable effects. Re-
taining the electron-electron collision term greatly increases the complexity
of the collision operator on the RHS of the semiclassical Boltzmann equation.
In fact the collision operator for the electron-electron scattering is a highly
nonlinear one, being quartic in the distribution function.

After a collision the electron can remain in the same valley (intravalley
scattering) or be drawn in another valley (intervalley scattering).

The general form of the collision operator C[f] for each type of scattering
mechanism is

Clf] = / [P(K k) f(K) (1 — 47 f(k)) — P(k, K')f(k) (1 — 47’ f(K'))] dk(8)

The first term in (8) represents the gain and the second one the loss. The
terms 1 — 473 f(k) account for the Pauli exclusion principle. P(k,k’) is the
transition probability from the state k to the state k’.

Under the assumption that the electron gas is dilute, the collision operator
can be linearized with respect to f and becomes

el = / P K)F(K) — Pk K) (k)] dk. (9)

As we shall see at equilibrium the electron distribution must obey the Fermi-
Dirac statistics
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feq = |eXp —gi'u +1 B
o= | kBTl '

kg being the Boltzmannn constant, y the chemical potential and T, the lattice
temperature which will be taken as constant.
In the dilute case, one can consider the maxwellian limit of the Fermi-Dirac

distribution
s E—pn
o R exp | — .
d P kTt

In both cases from the principle of detailed balance [8], it follows that

P(K' k) = P(k.K') exp <4 i;:ri ) , (10)

where £ = £(k) and & = E(K').

3 H-theorem and the null space of the collision operator

In [9, 10, 11] an H-theorem has been derived for the physical electron-
phonon operator in the homogeneous case without electric field. The same
problem has also been discussed in [12] in the parabolic case.

Here we review the question in the case of an arbitrary form of the energy
band and in the presence of an electric field, neglecting the electron-electron
interaction and assuming the electron gas sufficiently dilute to neglect the
degeneracy effects. By following [13] a physical interpretation of the results is
suggested.

The transition probability from the state k to the state k' has the general
form [14]

P(k.X) = G(k.K) [(Ng + 1)6(E' — € + hwy) + Npd(E' — € — hw,)] (11)

where §(x) is the Dirac distribution and G(k, k') is the so-called overlap factor
which depends on the band structure and the particular type of interaction
[14] and enjoys the properties

Gk, k') =Gk k) and G(k,k')>0.
Np is the phonon distribution which obeys the Bose-Einstein statistics

1
Np = 12
B exp(hwq/kpTL) — 1’ (12)

where fuw, is the phonon energy.
Given an arbitary function (k) for which the following integrals exist,
the chain of identities [9, 10, 11]
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/C[f]"/)(k)dk = / [P(k” k)f(k/) _ P(k, kl)f(k)] ﬂ)(k)dkdkl _
/B,z P(k, k') f(k) (v(K') - ¢(k)) dkd k' =

G(k, k') [(Np + 1)8(E" — € + hw,) + Npb(E' — € — hw,)] x
B2

f(K) (@(K') = ¢(k)) dkd k' =

- G(k.K)o(E' —E—hw,) (Np+1) f(k') = Npf(K)] (¢(k) (k') dkd K’

holds. By following [11] if we set without loss of generality

709 = hk)exp (o).

and in analogy with the case of a simple gas we take
¥(k) = kplog h(k),

by using the definition of d(z), one has

k‘BTL
(h(K') — h(k)) (log h(k) — log h(K')) dkdk’' < 0. (13)

ka [ Clfllogh(ldk = kn [ G0 I)B(E" & ~ by Np exp (” ; >

Therefore along the characteristics of eq. (5)
daf
— | log h(k)adk = — [ C[f]logh(k)dk > 0.

This implies that

LP:kB/(/logh(k)df)dk:k.B/(flogf—f—l—ﬁf)dk. (14)

can be considered as a Liapunov function for the Boltzmann-Poisson system
(5)-(7). The first two terms are equal to the opposite of the entropy arising in
the classical limit of a Fermi gas, while the last term is due to the presence of
the phonons. ¥ represents the nonequilibrium counterpart of the equilibrium
Helmholtz free energy, divided by the lattice temperature. It is well known in
thermostatics that for a body kept at constant temperature and mechanically
insulated, the equilibrium states are minima for ¥.

A strictly related problem is the one of determining the null space of the
collision operator. It consists in finding the solutions of the equation C(f) =
0. The resulting distribution functions represent the equilibrium solutions.
Physically one expects that, asymptotically in time, the solution to a given
initial value problem will tend to such a solution.
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The problem of determining the null space for the physical electron-phonon
operator was tackled and solved in general in [11] where it was proved that
the equilibrium solutions are not only the Fermi-Dirac distributions but form
an infinite sequence of functions of the kind

1
1+ h(k)expE(k)/kpTy

f(k) = (15)
where h(€) = h(€ + hw,) is a periodic function of period hwy/n, n € N.
This property implies a numerable set of collisional invariants and hence of
conservation laws. The physical meaning is that the density of electrons whose
energy & differs from a given value « by a multiple of hw, is constant. However
if there are several types of phonons, as in the real physical cases, and their
frequencies are not commensurable, the kernel of the collision operator reduces
to the Fermi-Dirac distribution.

4 Macroscopic models

4.1 Moment equations

Macroscopic models are obtained by taking the moments of the Boltzmann
transport equation. In principle, all the hierarchy of the moment equations
should be retained, but for practical purposes it is necessary to truncate it at
a suitable order N. Such a truncation introduces two main problems due to
the fact that the number of unknowns exceeds that of the equations: these are

i) the closure for higher order fluxes;

ii) the closure for the production terms.

As in gasdynamics [15], multiplying eq. (5) by a sufficiently regular func-
tion (k) and integrating over B, the first Brillouin zone, one obtains the
generic moment equation

OM,,, /w k)—dk——E”/w(k ~—fdk = /w k, (16)

with
My = [ i) sax

the moment relative to the weight function .

Since
oYk
Jutoghac= [ wosmar— [ 175

with n outward unit normal field on the boundary 9B of the domain B and
do surface element of 9B, eq. (16) becomes
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d]\lw o) ; 9y (k ‘ ol —
/fd ) (k)dk + E Uf = dk_/%z/}(k)fnjda}_

/ P(K)C(f)dk. (17)

The term

¥ (k) fndo
B

vanishes both when B is expanded to R?, as in the parabolic and Kane ap-
proximations, ( because in order to guarantee the integrability condition f
must tend to zero sufficiently fast as & — oo ) and when B is compact and
(k) is periodic and continuous on 9B. This latter condition is a consequence
of the periodicity of f on B and the symmetry of B with respect to the origin.

Various models employ different expressions of (k) and number of mo-
ments.

4.2 The maximum entropy principle

The maximum entropy principle (hereafter MEP) leads to a systematic
way of obtaining constitutive relations on the basis of information theory (see
(16, 17, 18, 19] for a review).

According to MEP if a given number of moments My, A=1,..., N, are
known, the distribution function which can be used to evaluate the unknown
moments of f, corresponds to the extremal, fa;g, of the entropy functional
under the constraints that it yields exactly the known moments M 4

/'l/’AfA/IEdk = Ma. (18)

Since the electrons interact with the phonons describing the thermal vibrations
of the ions placed at the points of the crystal lattice, in principle we should
deal with a two component system (electrons and phonons). However, if one
considers the phonon gas as a thermal bath at constant temperature Ty, only
the electron component of the entropy must be maximized. Moreover, by
considering the electron gas as sufficiently dilute, one can take the expression
of the entropy obtained as limiting case of that arising in the Fermi statistics

5= —A:B/(flogf — f)dk. (19)

If we introduce the lagrangian multipliers A4, the problem of maximizing
s under the constraints (18) is equivalent to maximizing

5= AA <]V[A — /’I/JAfdk> -
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the Legendre transform of s, without constraints,
05=0.

This gives

\A
AY ]6f:0.

s+

Since the latter relation must hold for arbitrary df, it follows

1
ff\lE = exp [EAAU'A:I . (20)

We stress that at variance with the monatomic gas, the integrability prob-
lem due to the fact that the sign of the argument in the exponential is not
defined, does not arise here because the moments are obtained by integrating
over the first Brillouin zone, which is a compact set of R3.

In order to get the dependence of the A4’s on the M4’s, one has to invert
the constraints (18). Then by taking the moments of fa;p and C[farg], one
finds the closure relations for the fluxes and the production terms appearing
in the balance equations. On account of the analytical difficulties this, in
general, can be achieved only with a numerical procedure. However, apart
from the computational problems, the balance equations are now a closed set
of partial differential equations and with standard considerations in extended
thermodynamics [16], it is easy to show that they form a quasilinear hyperbolic
system.

Let us set

n(f) = —kp(flogf—f).

The entropy balance equation is obtained multiplying the equation (5) by
n'(f) = 9pn(f) and afterwards integrating with respect to k, one has

(()—),/ 1(f) dk+ﬁ/ ,,idk—%Ei./n/(j)a(szdk /q(f)C[f]dk_

By taking into account the periodicity condition of f on the first Brillouin
zone, the integral

omif) o e
/ (f)()k”f dk = Ok dk = /aB ,,(f)n dk

vanishes and the entropy balance equations assumes the usual form

ds  0p*
ot tom O
with

Q= /T;(j')’(}idk entropy flux



