I

p‘
!

e, p
it &
y 8
» o
e i

- Microcomputer
Systerits

Hardware/Software Design
Robert M.Blasewitz & Frank Stern

| HAYDEN




MICROCOMPUTER
SYSTEMS

Hardware/Software Design

Robert M. Blasewitz
Frank Stern

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey



To my loving parents, Paul and Cecilia and Dr. Robert
1. Bickford, who believed in me from the beginning.

RMB

To my wife, Sandra, and daughter, Julie.

FPS

Library of Congress Cataloging in Publication Data

Blasewitz, Robert M.
Microcomputer systems.

Includes bibliographical references and index.
1. Microcomputers—Design and construction.
5 INTEL 8080 (Computer) . Stern, Frank.

1. Title.
TK7888.3.B57 001.64 82-943
ISBN 0-8104-5123-9 AACR2

Copyright © 1982 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, or utilized in any
form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any infor-
mation storage and retrieval system, without permission in writing from
the Publisher.

Printed in the United States of America

123456789F’RINT|NG

82 83 84 85 86 87 88 89 90 YEAR



MICROCOMPUTER
SYSTEMS

Hardware/Software Design



Preface

This book is an excyclopedic look at the art of systems design
based upon the 8080 microprocessor. It describes computer systems
design from the bottom up, with emphasis on architectural components.
Such treatment permits students who are trained in switching and
logic theory but have very little programming background to under-
stand evolved microcomputer systems with little difficulty. For these
students, the book is supplied with selected fragments of software
programs to illustrate specific concepts of computer architecture and
systems design. The detailed hardware material it provides will serve as
an introduction to those students with a programming background.
Consequently, the book satisfies two needs, those of hardware and
software design, and the integration of both into a system.

The presentation carries the student from an elementary overview
through a detailed discussion of the fundamental aspects of the sub-
ject into several specialized and advanced topics. The text is highly
modular, allowing instructors the option of constructing a semester
course by drawing from chapters of their choice. The first four chapters
couple the basics of logic design, both combinatorial and sequential,
with state-of-the-art small-scale and large-scale integration techniques.
The remaining chapters cover the components of a computer system,
including memory, microprocessors, input-output, and software. The
examples given allow students to become conversant with software as
well as computer architecture. Advanced topics in the book include
data acquisition systems, microcomputer boards, 16-bit micropro-
cessors, and advanced technology.

Because computer technology is changing so rapidly, one of the
pitfalls of any textbook in this field is the inclusion of material that
easily becomes obsolete. This text deals with the problem of obsoles-
cence by focusing on trends and general observations of prior tech-
nological development. Although a number of other microprocessors
could have been chosen, the 8080 microprocessor was selected for its
clear-cut design, wide use, and representative capability and perfor-
mance. Use of the 8080 as the baseline microprocessor allows the
student to extend his or her knowledge to 16-bit microprocessor sys-
tems without undergoing a tumultuous transition period.



Before closing, we would like to thank the many people who have
contributed to this manuscript. Only through their efforts could a book
of this magnitude reach completion.

Special thanks are due to Thomas Fooks and Norman Some for
their encouragement and support of this project from its inception.
A great deal of gratitude is also due to Dr. Robert Donnell and C. J.
Lawrence for their many hours of consultation on the initial draft.

We would also like to thank Ingrid Dietiker, Linda Ciaccio, and
Mary Buelow for the many hours they spent typing the manuscript
and for having the patience to put up with the many changes made.
Thanks also go to Jane Silber for her work on the problem sections
and homework answers.

Last but not least we must express our sincerest appreciation to
our wives, Virginia and Sandra, for the great encouragement they
provided and for putting up with all those lost weekends.

ROBERT M. BLASEWITZ
FRANK STERN



Chapter 1

1.1
1.2
1.3
1.4
L5
1.6
1.7
1.8

Chapter 2

2.1
2.2
2.3
2.4
2.3

2.6
2.7

2.8

Chapter 3

3.1
3.2
33
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

Contents

Introduction 1

Decimal and Binary Systems 1

Other Number Systems 8

Arithmetic Operations on Number Systems 17
Fixed-Point Numbers 21

Floating-Point Numbers 22

Alphanumeric Characters 23

Roundoff Errors—Propagating Effects 23
Summary 25

Questions 26

Combinatorial Logic Systems 29

Boolean Algebra 30

Algebra of Boolean Functions 33
Canonical Forms 36

Karnaugh Maps 38

Logic Families and the Logical Representation
of Gates 45

Design Examples 49

Implementation of Logic Functions Using
Integrated Circuits 63

Summary 70

Questions 71

Sequential Logic Systems and Large- Medium-
Scale Integrated Circuits 73

The State Diagram 74

Memory Elements 76

The RS Flip-Flop 77

Clocked RS Flip-Flop 80

The JK Master-Slave Flip-Flop 82

The Edge-Triggered JK Flip-Flop 84

The T (Toggle) Flip-Flop 86

The D Flip-Flop (Delay) 87

The Type D Flip-Flop 88

The One-Shot or Monostable Multivibrator 90
Designing Timing Circuits Using One-Shots, Schmitt
Triggers, and 555 Timers 94



3.17

Chapter 4
4.1

4.2

4.3
4.4
4.5
4.6

4.7
4.8

Chapter 5

5.1
5.2
5.3
5.4
355
5.6
S 14

5.8

Chapter 6

6.1
6.2
6.3

6.4
6.5
6.6

The Design of Counters and Shift Registers 98
Multiplexers and Demultiplexers 104
Arithmetic Logic Units and Logical

Functions 109

Three-State Devices 115

Implementation of Sequential Circuits Using

ICs 118

Summary 120

Questions 121

Semiconductor Memory Subsystems

Introduction to Large-Scale Integration Memory
RAMs (Bipolar, MOS, Dynamic/Static) 124
Read-Only Memory (ROM, PROM, EPROM,
EAROM) 131

Content-Addressable Memory (CAM) 135
Charge-Coupled Device Memory 137
Magnetic Bubble Memory 141

Electron Beam Addressed MOS and Other
Memory Technologies 146

Interfacing Techniques 148

Memory Technology Developments and Future
Trends—Summary 156

Questions 162

The Microprocessor/Microcomputer System

Microprocessor Architecture 164

The Instruction Cycle 168

Machine Cycle Identification 169
Interrupt Sequences 174

The Hold and Halt Sequences 176
Start-up and Interfacing of the 8080A 176
Selecting the Microprocessor/Microcomputer
System 190

Summary 194

Questions 195

Microcomputer Software

Instruction Sets 198

The 8080 Instruction Set 201

Loaders, Assemblers, Interpreters, and
Compilers 239

High-Level Languages 242

Systems Software 260

Data Base Management Systems (DBMS) 261

123

164

197



6.7
6.8

Chapter 7

7.1

7-2
7.3
7.4
7S
7.6

Chapter 8
8.1

8.2
8.3

8.4

8.5

Chapter 9

9.1
92
9.3
9.4

9.5
9.6

9.7
9.8

Appendix

References
Answers
Index

Software Design and Reliability 264
The Life Cycle of Software 267
Questions 271

Microcomputer Interfacing—The Digital and
Analog World

Accumulator Input/Output and Memory-Mapped
Input/Output 274

Parallel Input/Output Systems 278

Serial Input/Output Systems 280

Interface Control Methods 286

Peripheral Interfaces 292

Summary 340

Questions 341

Data Acquisition Systems

Introduction to Data Acquisition Systems
Specification 344

Performance Specification Definitions 346
Conversion Processes—Understanding
Converters 356

Interfacing Converters with Microprocessors—
The Data Acquisition System 363
Summary 382

Questions 383

The New Generation and Beyond

The 8-Bit Microprocessor 387

The 16-Bit Microprocessor 421
Single-Chip Microcomputers 431
Microprogrammable Microprocessors—Bit-Sliced
Microprocessor Architecture 437
Single-Board Microcomputers 449

The Microprocessor Development System and
Systems Design 477

Microcomputer Operating Systems 483
Summary 485

Questions 487

The Motorola MC6800 Microprocessor
The Zilog Z-80 Microprocessor

273

343

386

489
500

509
517
545



Chapter 1
Introduction

The fundamental requirement of a computer is the ability to represent
and store numbers and to perform operations on the numbers represented.
Chapter 1 introduces various number systems and digital codes. Since the
binary system has proved to be the most natural and efficient number
system for machine use, it is explained in great detail. Other useful codes
for representing information are also presented and compared.

1.1 Decimal and Binary Number Systems

Our present system of numbers has ten separate symbols, namely 0,
1,2,3,4,5,6,7,8,9, which are called Arabic numerals. This decimal
system counts in units of tens and was probably developed because of
man’s ten digits—his fingers. A number larger than 9 is represented through
a convention that assigns a significance to the place or position occupied
by a digit. In general, any number N, in a fixed, positive, integral base b
number system may be represented in positional notation as

Nb = AnflAnfl s e AZAlAUAflAfZ site Af(mfl)Afm

where each A represents a digit in the order given, b = base of the system,
n = number of integral digits, and m = number of fractional digits. (For
decimal number 374.26,b = 10,n =3, m = 2, A, = 3, A, =7, A, =
4, A, =2,and A , =6.)
The numerical significance of this order is calculated as follows:
N, = Ab*~1 + Ab*2... Ab' + AP’ + Abp~*
+ Ab2... . Ab ™D + Ab™™

where Ab"! = A, ,, Ab"2 = A _,, Ab' = A, and so forth. The
positional coefficients A; are such that

0<A =< (-1

Thus one can see that a number is expressed as a sum of the powers of its
base b multiplied by the appropriate coefficients A;. [In the decimal system,
obviously, 0 < A, < (b—1) < (10-1) < 9.]

1



2 MICROCOMPUTER SYSTEMS

In general, we may represent any number N, by the following sum-
mation:

n—1
N, = > Ab

where x equals the power of the positional coefficient.
For example, the numerical significance of the decimal number 7043
[Ai = 7,0,4,3; m = 0; n = 4] is calculated as follows:

7043,, = (7x10% + (0x10%) + (4x10') + (3% 10°)
7000 + 0 + 40 + 3
= 7043

The great beauty and simplicity of our decimal number system can
now be seen. It is necessary to learn only the ten basic numerals and the
positional value system in order to represent any number.

It is, of course, quite feasible, and often very useful, to work with
anumber system that has a base other than 10, for example, the duodecimal
system (base 12) is very handy when dealing with time, inches, feet, and
dozens or grosses. However, in digital systems, a number with the base 2
is extremely useful. Such a system, called a binary system, uses just two
simple digits, 0 and 1. Its advantage in regard to digital electronics lies in
the fact that we may arrange a one-to-one correspondence between the
two digits 0 and 1 and the two possible truth values (true or false) of a
logical variable represented by the symbols 0 and 1. These binary variables
involve only the presence or absence of a signal level and are especially
easy to generate, transmit, and store reliably. We sometimes pay for this
great convenience. Most problems or variables admit a much greater va-
riety of possible states than just two and must therefore be represented in
terms of ordered combinations of binary variables called codes.

In the binary system, the individual digits represent the coefficients
of 2 rather than 10, as in the decimal number system. Again, any binary
number may be represented as follows:

n—1
N, = > A2
where x, m, and n are defined as before. Since (b—1) = (2-1) = 1,
O0<A =<1

The binary number 11001, for example, is expressed as follows:
11001, = (1x2%) + (1x2%) + (0x2%) + (0x2') + (1x2%
16 +8+0+0+1

= 25,

In other words, binary 11001 = decimal 25.



INTRODUCTION 3

The process of counting can be used to point out similarities between
the decimal and binary systems. In the decimal system, counting consists
of increasing the digit in a particular position in the order 0, 1, 2, . . .,
8, 9. When we reach 10 in this position, we carry 1 to the immediate left
position. Since the binary system can only go through two stages, we carry
1 to the immediate left position much more rapidly than in the decimal
system. Thus, the numbers used in the binary system to count to a decimal
value of 20 are those shown in Table 1-1.

Table 1-1. Equivalent Numbers in Decimal and Binary Notation

Decimal notation Binary notation
AA, AAAA A,
00 00000
01 00001
02 00010
03 00011
04 00100
05 00101
06 00110
07 00111
08 01000
09 01001
10 01010
11 01011
12 01100
13 01101
14 01110
15 01111
16 10000
17 10001
18 10010
19 10011
20 10100
Nio = (A10") + (A, X 10°) N, = (A2 + (As2) + (A2%) + (A2') + (A2)

Notice that fractional binary numbers may be-converted in the same
general way as in the decimal system. That is, just as 12.236 is equivalent
to

(1 x10") + (2 x10° + (2 x 107" + (3 x 1072) + (6 x 107?)
in the decimal system, 1101.11101 is equivalent to
Ax2)+ 1 x2)+Ox2H)Y+(1Ax29+(1x27
+ (1 X279 + (1 X273 + (0 %x27) + (1 X 27°)

in the binary system.



4 MICROCOMPUTER SYSTEMS

Thus, it is easy to see where each digit in either system represents
a certain weight, or weighing factor, to be used in representing a complete
number system. For example, consider the conversion of binary 101.11 to
a decimal number as shown in Table 1-2.

Table 1-2. Binary-to-Decimal Conversion

101.11 binary
A, A, A, AT AL, Weights
1 0 1 1 1
22 2! 20 = 2-2 Binary
4 2 1 1/2 1/4 Decimal
+ 0 + 1 12 + 1/4
5 + 3/4
5.75 decimal

This conversion leads us to the various mathematical methods or
techniques for converting from the binary number system to the decimal
number system. Decimal numbers can have, in general, an integer part
and a fractional part. Each part should be converted separately into a
binary equivalent. The complete representation is obtained by combining
the two along with the binary point. There are two commonly used methods
for converting decimal numbers to binary equivalents: the subtraction
method and the division-multiplication method.

Subtraction Method

In this method, one must subtract the highest power of 2 from the
decimal number and place a 1 in the appropriate weighing position of the
partially completed binary number. This procedure must then be continued
until the decimal number is reduced to zero—a tedious and laborious
method for converting numbers. Although convenient for numbers of small
magnitude since it can be performed mentally, it is rarely used for large
numbers. The following example will help to illustrate the procedure of
the subtraction method. Consider the number 53 in base 10:

1. Subtract from the decimal number the largest power of 2 contained
therein. Since 2° = 32 and 2° = 64, the former is the largest power
that can be subtracted:

Weight matrix

As A. A, A, A A,

53
_ 32 (or 2% 25 24 29 22 1 o
R= 21 1




INTRODUCTION

2. Subtract the next largest power of 2 from the remainder R. Since 2°
= 8,24 = 16, and 2° = 32, we subtract 2* = 16:

Weight matrix

As A, A A A A

21
— 16 (or 24) 25 24 23 22 1 20
R= 5 11

3. Subtract the next largest power of 2 from the remainder R. If after
the last subtraction, the next largest power of 2 cannot be subtracted,
place a zero in the weight matrix position. For example, since 2* =
8 cannot be subtracted from R = 5, A, = 0. The next largest power
of 2 that can be subtracted from R = 5is 22 = 4, as shown below:

Weight matrix

A A, A A A A

5
~ 4 (or ) 25 24 p 2 21 2
R= 1 1 1 0 1

4. Follow step 3 given above, filling in the weight matrix as before.
Since 2° = 1 and 2! = 2, we subtract the former:

Weight matrix

A AL A A A A

1
= 1l (or 2()) 25 24 23 22 20 20
0

R = 11 0 1 0 1

We have now completed the conversion, and our weight matrix looks
as follows:

(53))p = Ay X 2° + A, X 2 + A; X 22 + A, X 22
+ A, X 2t + Ay x 2°
= (As AL Az A, A, A())z
=(110101),



6 MICROCOMPUTER SYSTEMS

Fractional numbers can be converted in the same manner; for example,
consider the fraction .5625 in base 10. To convert this number to a binary
fraction, proceed as follows:

1. Subtract the largest fractional base 2 number from the decimal num-
ber. Since 2-!' = .50 and 2-? = .25, we subtract the former:

Weight matrix

A, A, A, A,

0.5625
~.5000 (or2-Y 2T 2° 27 2°
R = 0625 .

2. Subtract the next largest base two number from the remainder. Since
-4 = .0625, we subtract it:

Weight matrix

A, A, A, A,

.0625 ——
— 0625 (or 274 g e e
R = .0000 1 0 0 1

The subtraction method thus yields the following result:

(0.5625),, = (.10010),

It should be noted that the remainder will sometimes not converge
to zero very rapidly for a finite number of significant decimal digits. In
effect, there may very well be a roundoff error in representing decimal
numbers in binary form, irrespective of the number of binary digits avail-
able for the representation.

Division/Multiplication Method

Given a decimal integer, this method uses division by 2 to yield a
conversion to a binary integer. If there is a remainder, we must place a 1
in the weight matrix under the lowest binary weight; if there is no re-
mainder, we must place a zero in the weight matrix. We then divide the
result of the first division by 2 and repeat the process until the result has
been reduced to zero. For example, consider the decimal number 53:



INTRODUCTION 7

Remainder Weight matrix

A A A A A A

25 24 2 22 2! 29

53/2 1 1
26 D
26/2 0 0
13 -
13/2 1 1
6 e
6/2 0 0
3 =
32 1 1
1 =
172 1 1
0

(110101), = (53)

If a decimal fraction must be converted to binary, apply a number
of multiplications by 2. If the product is less than 1, the most significant
binary digit is zero; if the product is greater than 1, the most significant
binary digit is 1. The second digit is obtained by the same rule, operating
this time on the fractional part of the product obtained from the first step.
This process is continued until the desired degree of accuracy is obtained.
As an example, consider the conversion of (0.5623),, to binary shown at
the top of the following page.

Rounding off our result to the seven digits obtained thus far, we have

(0.5623),, = (.1000111),

Since we have not carried our procedure far enough, we have at this
point a roundoff error of 0.0076. As was said previously, a binary equivalent
may not terminate and will thus produce a roundoff error. Since a word
in a computer is of finite length, it is clear that the representation of a
decimal fraction will usually involve an error, the magnitude of which will
depend upon the length of the computer word.



8 MICROCOMPUTER SYSTEMS

Weight matrix

A, A, Ay A, A, A, A,

0.5623 2-1 272 2-3 p-4 25 9-6 oo-7
X 2
11246 >1 ;

0.1246
X 2

0.2492 <1

0.2492

0
X 2 =
0

0.4984 <1

0.4984
X 2

0.9968 <1 0

0.9968
X 2

1.9936 >1

0.9936
X 2
1.9872 >1 1

0.9872
X 2

1.9744 >1

1.2 Other Number Systems

Octal Number System

To express a number in the binary number system, it is necessary to
use substantially more digits than are required by the decimal number
system. Since computers are built to serve man, it becomes necessary to
have number systems that are easily manipulated and understood by both



