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PREFACE

This volume contains the lectures of the EUROMECH COLLOQUIUM
200 on Post-Buckling of Elastic Structures held at MAtrafired,
Hungary in the autumn of 1985. Some of the lectures have al-
ready been published elsewhere, so only their abstracts are
given here.

Undoubtedly, these papers provide worthwhile contributions
with possible applications in theoretical investigations and
algorithms.

There were 33 lectures at the colloquium followed by lively

discussions. The themes were divided into 3 groups:

I. General theory of buckling and post-buckling
f1. Buckling and post-buckling of particular structures

III. Special topics

This enumeration, however, does not offer a true picture of
the main topics of the colloguium, which is outlined below.

Professor Koiter could not take part in the colloquium per-
sonally, but of course, almost all the authors referred to him
and mentioned his famous Ph.D. thesis, "On the Stability of
Elastic Equilibrium" published 40 years ago. This thesis can
still be considered a pioneering work in the exact analysis of
the non-linear phenomenon of the post-buckling behaviour of
structures.

Change of post-critical state and its stability can be
generally investigated by numerical methods. At the same time,
the classification of critical points is gaining ground, while
new and old models with improved numerical methods are becoming.



important, aided by the increasingly popular catastrophe theory.
Accordingly, a change in quality is taking place in the descrip-
tion of equilibrium paths; discussion of critical regions is
replacing that of critical points.

These tendencies could be observed at the colloquium and
they are reflected in this book. Progress has been made in the
direction of theoretical investigations justified by the re-
sults of special, proved, numerical procedures and suitable for
wider generalization.

As a last point, any data on experiments performed in the
laboratory or on full-size structures, justifying theoretical
or numerical investigations are most welcome. Data contradicting
theoretical and numerical investigation, and in this way chal-
lenging further progress, are also welcome.

We feel this volume will be an inspiration for further ad-

vances in this branch of science.

Professor J. Szabd

Member of the Hungarian Academy
of Sciences

Chairman of the Colloquium

vl
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DYNAMIC STABILITY OF ORTHOTROPIC PLATES
RESTING ON PASTERNAK TYPE FOUNDATIONS

H. BODUROGLU

Faculty of Civil Engineering, Istanbul Technical University
Maslak, Istanbul, Turkey

ABSTRACT

In this paper, the dynamic stability of orthotropic rectangular plates
resting on Pasternak type foundation is investigated. Linear plate theory
is used to study the vibration of such a plate with and without in-plane
forces. Dynamic stability of the plate under harmonic in-plane forces is
treated and the regions of dynamic stability is discussed,

I. INTRODUCTION

During the last twenty years, advanced composites have become established
as high performance structural materials and their use is increasing
rapidly. Fiber-reinforced laminated composite plates are receiving greater
attention in a variety of engineering structures., Many applications
involve thin plates and shells under loadings causing failure by buckling.
Static stability of orthotropic plates have been the aubject of numerous
investigations such as (Chamis, 1969; Chao etal 1975; Harris 1975; Harris
1976; Dickinson, 1978; and Brunelle 1983). On the dynamic stability of
plates the work by (Ekstrom, 1973) and (Boduroglu and Uzman, 1980) can be
considered. TFor the vibration of such plates (Bradford and Dong 19753), can
be given as a reference.

In this paper, the effect of Pasternak type elastic foundation (Pasternak,
1954) on the dynamic stability of an orthotropic plate is investigated.
This type of foundation yields the load-displacement relation

p= Kw—GOVZW (1)
where V2 is the Laplace operator in x .and y ; K is the elastic
spring constant and G, 1is a constant showing the effect of the shear
interactions of the vertical elements.

2. GOVERNING EQUATIONS

The small deflection theory of plates is utilized subjected to harmonic in-
plane forces Nyg,Ny and Byy given in the appendix, The resulting
differential equation of an orthotropic rectangular plate is obtanied as



%w 9%w 2w 92w

L, +m + K" G, Vv = N + 2N + N (2)
at? ox2 xy 9x9y Y oax?

where L 1is the operator given by,
3 3" a*

+ D — (3)
8x28y2 y ayu

+ 2(vayx + 2D66)

ox*

w(x,y,t) is the out-of-plane displacement, m 1is the unit mass of the plate,
Dx, Dy, De6 are the plate rigidities and Vyx is Poisson's ratio.

Galerkin's method can be used to solve the above differential equation.

Then the out-of-plane displacement can be considered as

W(Xsy,t) = fij (t) ¢ij (Xsy) (4)

[ =

m

z
i=1 j=1
where ¢ij(X,y) are the coordinate functions satisfying the plate boundary
conditions in the form of

PICRORE A CRUACY (5)

Here ¢? and ¢¥ are the eigenfunctions of a vibrating beam satisfying
the boundary conditions in x and y respectively and fj:(t) are the
coefficients as a function of time t. Application of Galerkin's method
yields the following set of simultaneous differential equations in vector
form

VDXD G, o Becosbt
m;r+[—y-5+x_1_——§——g————_q £=0 (6)
- a?b? ab ab ab -

in which I in the unit matrix and_ the matrices R, K, S, P, Q are
given in the appendix and f and f are the vectors of the coefficients

fij and their second time derivatives respectively.

3. SPECIAL CASES
Eq. (6) can be studied for the following special cases :

Case-1 Vibration of the plate under static in-plane forces when B is zero.
In this case, the frequencies @y of the vibration of the plate are obtained
from the roots of the determinant,

v D.D Go [+
[~—"—1 R + KL ~ s - E-(@ml | =0 )
a?b? ab ab



Case-2 Vibration of the plate under static in-plane forces whed ¢ and 6
are zero. The frequencies QB are obtained from the iegenvalues of the

determinant

/D D Go
[ ~2Y R+RI-— §- (QB)zm l} = 0. (8)
a%b? ab

Case-3 Vibration of the plate under static in-plane forces when 0 is
zero. The corresponding frequencies QGB are obtanied from the eigenvalues
of the determinant

JDxD G° o B
[_.l I_(+Kl-——-—§-———2_———Q—(Qa8)2ml]=0. (¢))
a?p? ab ab ab

Case-4 Boundaries of the dynamic stability of the plate when © is nomn
zero. For certain values of 6 , the stability of the plate is lost. The
boundaries of O responsible for the instability can be determined., It is
known that the solution of the differential equation (2) turns ont to be
periodic when the frequency 6 of the forcing function is chosen to be at
these boundaries. The period is given by T = 4m/8 . Values of 6 outside
of these boundaries will not .cause instabilities of the related solutions.

For periodic solutions of the Eq.(2), f(t) can be expressed as
1 oo nft ndt

f(t)= — b, + T (an sin + bn cos
~ 2 n=1 " 2 ~ 2

). (10)

We will determine the values of 8 giving such solutions. Substituting
Eq.(10) into Eq.(6) and equating the coefficients of the harmonics, a
lineer set of homogeneous equations in a, and b, is obtained. Thus
the determinant of the the coefficient matrix will give us the values of
® for periodic solutions. These values of © are the boundaries for the
dynamic stability problem.

Considering one term in the series, i,e, n~= 1, this determinant becomes

vD_ D G o 1 1
( 2L R+KL- > 8-— P+—BQ+—062ML) O
a?p? ab ab 2 4
=0 (11)
vD_D G a 1 1
0 . (—EY R+KI--—2 §~—P - —BQ-— 6°MI)
a?p? ~ ab T ab 2 T 4 -

The values of 6 making the first term of the determinant equal to zero
give the lower boundaries and while the last term of the determinant yields
the upper boundaries. For each vibration mode one lower and one upper
boundary value exist. When n is 1, for each vibration mode first
resonance region is determined. Comparison of the Egs. (9) and (11) yields
a relationship between 8's and Q's as



— =0 8 .
4 (o, - 2) for lower boundaries
(12)
0% . .
= 8 for upper boundaries
4 (@, )
4, EXAMPLE

A plate simply supported along four edges is taken as an example.
Making use of the following coordinate transformation similar to the one

suggested by (Krenk, 1979),

x—x S5/ L and F_y /X (13)
D D
X y

Eq.(6) can be written in a simpler form. In this case, the out-of-plane
displacement can be considered as

2 imx jry
sin sin — (14)
a b

m
w(x,y,t) = ) z . z £..(t)

-
-
(S
o
ol

which satisfies the geometric and as well as the dynamic bouadary conditions
along the edges of the plate. Substituting Eqs.(13) and (14) into Eq.(6)
and applying the Galerkin's method together witb the orthogonality conditions
of the harmonic functioms,

im ijm? jm _ im
Y¢+ 20™( Y+ (—) + (R + (N-G X

X 0
a ab b a

mf.. +D [( 324
1]

- jm
(N~ 6, _b)ZJ)fij =0 (15)

is obtained. Please see the appendix for the transformed quantities. As
examples the following cases are considered.

Case I : N, and N, are taken to be constant. In this case the solution
X y
of Eq.(15) is

f.. = A cos,.t + B sin{l, .t (16)
ij ij ij

The natural frequency Qj; corresponding to the mode ij when the in-
plane forces are peresent” is



m a rlJ 1]m 1]m rij
ab 1!
+ (N -G) r,.|— (17)
YO gt ”J D
where r,,= a% N
1] bi
Case II : Nx and N are taken to be harmonic. In this case, Eq.(15)
becomes y
. ir | « ijn? v, im , i,
mf,. +D [%———) + 205 ——)%+ (—)" +{K + (XSG X —)"+ (a¥ ~G) ()
J a ab b i b
lﬂg jTT 2
+ BXE*ﬂ)(—g*) +(BY£GO)(‘E—O cosbt} fij =0 (18)

Eq.(18) can be rearranged to give the Mathieu equation and the boundaries
of stability of the Mathieu function is ‘easy to obtain (Bolotin,1964).

5. CONCLUSIONS

From the examples given above one can see that the elastic foundation
constant K increases the frequencies while the constant G, decreases
them in a qualitative manner. The quantitative manner can be obtained by
studying the numerical examples. The boundaries of the dynamic stability
can be determined using the generalized Jacobi algorithm for the
eigenvalues of the determinants mentioned above. This problem is still
being investigated.
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Appendix

Parameter appearing in Eqs.(2) and (3) are given below.

3 3 3
EX h Ey h B ny h
D, = D, = —F—— Dg— —o—
— 2(1- 2
12(1 vxyvyx) 12¢( vxy“yx) 1

in which Ey , Ey are the modulus of elasticity in x and y directions
respectively and Gxy is the shear modulus h is the plate thickness;

Y and v are Poisson's ratios.
Xy yx

Nx(x,y,t) = ~ (oX, t+ BY, cosbt)
Ny(xsy,t) =~ (0¥y + BYC cosft)

Ny (x,y,t) = ~(0Z, + BZy cosBr)



in which X_, Xt, Y, Yt’ Z0 and Zt are constants; O and B are load
parameters.

The elements of the matrices K, R, S, P and Q are

ab
K™ i i 95 bps dxdy
ab D 3¢ (bv_--2D.,) 3",
R..~ [ J X ij 6+ 2 X yx “766 ij
1J oo Dy ox" rs /D D 3x28y2 rs
by ij
+ *—D— ay“ ¢I'S] dxdy
ab [ 2%,. ¢
S..= [ J oy +—2 4 | dxdy
ij o o |ox? rs 3y2 rs
ab [ 3%,, 2%, . 3%¢.. ]
Ry L% 12 by T 22, —4 bpg * Y, — ¢__| dxdy
oo ax 9xdy 3y? J
ab 8%, 3%, . 8%, |
Q: =/ [ [x —H o 4 2z, 1 4 + Y, —3iL ¢ | dxdy
I %o ax2 TS Ixdy IS 3y rs

Iransformed quantities appearing in Eq.(15) is given below.

D=v D D
Xy
x=
D (0, Vo * 2ge)/D
D Y/ D
F =x & X , §a=n Y_Xx
X X y y D

D
x



