QUICK PASCAL

DAVID L. MATUSZEK

QUICK PASCAL

DAVID L. MATUSZEK

The University of Tennessee

. NEAR ¢
A3)

1807\ A1982

pe)
2

O
usH\V\

JOHN WILEY & SONS

New York e Chichester ¢ Brisbane ¢ Toronto <« Singapore

Copyright © 1982, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to

the Permissions Department. John Wiley & Sons.

Library of Congress Cataloging in Publication Data:

Matuszek, David L.
Quick Pascal.

Includes index.

1. PASCAL (Computer program language)—Study and
teaching. 1. Title.
QA76.73.P2M35 1982 001.64'24 82-8354
ISBN 0-471-86644-X AACR2

Printed in the United States of America

109 8 7 6 5 43 21

QUICK PASCAL

To My Father,
Chester Matuszek

PREFACE

The purpose of this book is to teach Pascal to programmers who need to
know the language yesterday. It is not suitable for teaching Pascal to non-
programmers. My intention is to make it practical to use Pascal in computer
science courses even though students have not previously been taught this
language.

The first chapter is an overview of Pascal and provides enough informa-
tion for the student to be able to read most Pascal programs written by other
people. The second chapter covers assorted details that the student will need
to know in order to begin writing his or her own programs. Taken together,
Chapters 1 and 2 provide a complete short course in Pascal. The remaining
chapters are organized by topic, so that the student attempting to use a
particular feature of Pascal (for example, variant records) will find all the
necessary information in one placc. This necessitates some redundancy; for
example, all the information presented in Chapter 1 is repeated in greater
detail at the appropriate places in later chapters. To further increase the value
of the book as a reference, considerable summary information is provided in
the appendices, and there is an extensive index.

The emphasis throughout the book is on teaching Pascal as it really is, not
as it ought to be. Most Pascal books describe only an idealized **Standard
Pascal,’” or else Pascal for a particular machine. This book describes not only
Standard Pascal, but also four real implementations. Whatever dialect of
Pascal you use, the chances are that it will be enough like one of these
described here to enable you to find what you need. Throughout the book you
will find hints for exploring the particular Pascal you are working with.

The language presented here is full Pascal; nothing from Standard Pascal
has been left out, and many variations from Standard Pascal have been
included, because Standard Pascal is certainly not what you have to work
with on your machine.

Although Pascal is a useful language, it is not perfect. The quirks and

viii PREFACE

problems you are likely to encounter are discussed in detail to help you get
over the rough spots. The four representative implementations are

PASLC The upper/lowercase compiler on the DEC-10, developed at
the University of Hamburg, Germany.

Pascal 8000 The compiler for the IBM 360/370, developed at the Uni-
versity of Tokyo, Japan, by Teruo Hikita and Kiyoshi Ishihata for
the Hitac 8800/8700 computer, and adapted for the IBM system by
Gordon Cox and Jeffrey Tobias at the Australian Atomic Energy
Commission, Australia.

CDC Pascal The Pascal 6000-3.4 compiler for the CDC 6000 computers,
as described by Kathleen Jensen and Niklaus Wirth.

UCSD Pascal The Pascal compiler developed for use on microcompu-
ters at the Institute for Information Science at the University of
California at San Diego, under the direction of Kenneth L. Bowles
(Apple version).

In this text we will refer to particular Pascal compilers by the above
abbreviations. However, it should be understood that the companies that
make these computers are not necessarily responsible for the Pascal com-
pilers on those machines.

I thank Charles Hughes, Eugene Getchell 111, and Hal Harrison for their
careful reading of the manuscript. They caught many errors and made many
helpful suggestions. Any errors that survive are, of course, entirely my own
responsibility.

DAVID L. MATUSZEK

CONTENTS

PART ONE INTRODUCTION

Chapter 1. An Overview of Pascal

N s L=

First example: Adding two numbers 3
Conventional declarations in Pascal 5
Conventional statements in Pascal 6
Second example: Sorting an array 8
Procedures and functions 9
Unconventional features of Pascal 11
Third example: Counting a Bridge hand 20

Chapter 2. Issues in Writing Pascal Programs

2.1
2.2
2.3
2.4

Lexical issues 25
Semicolons 27
One-pass compilation 29
Compiler options 31

PART TWO DECLARATIONS AND STATEMENTS

25

Chapter 3. Declarations

3.1
3.2
3.3
3.4
3.5

The LABEL section 35

The CONST section 36

The TYPE section 38

The VAR section 40

The VALUE section (Pascal 8000 only) 41

Chapter 4. Expressions and Assignment Statements

4.1

Numeric expressions 43

35

X CONTENTS

4.2
4.3
4.4
4.5

Chapter 5.

5.1
5.2

Boolean expressions and comparisons 47
Expressions involving other data types 49

Precedence of operato

rs

Assignment statements

The IF statement S5
The CASE statement

Chapter 6. Loops

6.1
6.2
6.3
6.4
6.5
6.6

Chapter 7.

7.1
7.2
7.3
7.4
7.5
7.6
7.7

When to use each kind of loop

50
51

Conditional Statements

58

The WHILE loop 63
The REPEAT loop 63

The FOR loop 63

61

The LOOP statement (Pascal 8000 only) 65
The LOOP statement (PASLC only)

Procedures and Functions

Syntax of procedures and functions

Parameter transmissio
Scope of names 74

Returning values from functions

n

71

77

FORWARD and EXTERN directives

Recursion 80

67

69

78

Procedures and functions as parameters 83

Chapter 8. Input/Output

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Simple input/output
Files 89

87

High-level input/output for textfiles
Input/output for other types of files

End-of-data indicators

Low-level input/output
Interactive input/output
Segmented files (CDC Pascal only)

97
99
101

93
96

103

PART THREE STRUCTURED DATA TYPES

55

61

69

87

Chapter 9.

9.1
9.2
9.3

User-Defined Scalar Types

Declaring and using enumeration types 107
Input/output for enumeration values

Subrange types 110

Chapter 10. Arrays

10.1

Array declarations

113

109

107

113

CONTENTS

10.2 Arrayusage 116
10.3 Use of FORloops 117

Chapter 11.

Characters and Strings

11.1 Characters 121
11.2 Strings, except in UCSD Pascal 123
11.3 Strings in UCSD Pascal 126

Chapter 12.

Records and Pointers

12.1 Simple grouping 129

12.2 Pointers 131

12.3 Example: Stack operations 133

12.4 Variant records 138

12.5 Example: Lexical scanning 143

12.6 The WITH statement 146

12.7 Allocating and recycling storage 147

Chapter 13. Sets

13.1 Set types and constants 151
13.2 Usingsets 153

APPENDIX A.

APPENDIX B.

APPENDIX C.

APPENDIX D.

INDEX

Summary of declaration sections and statement types
Built-in functions and procedures
Collating sequences

Compiler options

xi

121

129

151

157

161

165

169

173

PART ONE

INTRODUCTION

Chapter 1

AN OVERVIEW
OF PASCAL

Pascal has become popular because it is a simple, easily understood lan-
guage. In exchange for simplicity, it is less flexible than big languages like
PL/I.

1.1 FIRST EXAMPLE: ADDING TWO NUMBERS

The fastest way to get familiar with the language is by looking at examples.

PROGRAM ADD (INPUT, OUTPUT);
(* EXAMPLE 1: Program to add two numbers.)
VAR
I, J, SUM: INTEGER;
BEGIN
READ(l, J);
SUM = | + J;
WRITELN(SUM)
END.

O©CoOo~NOOOAWN—

The line numbers are not part of Pascal. They are there to help us
discuss the example.

The first line names the program **ADD’’ and specifies the files (INPUT
and OUTPUT) that it will use. INPUT is Pascal’s name for the standard
input file (regardless of what your operating system calls it) and OUTPUT is
the name for the standard output file. INPUT and OUTPUT are examples of

4 CHAPTER 1: AN OVERVIEW OF PASCAL

textfiles, that is, files which contain information in human-readable format
(text). Pascal also supports the use of binary files.

Line 2 is a comment. Comments appear between the symbols (+ and *).
In some implementations and many textbooks you will also see comments
enclosed between curly braces { and }. Comments may be put anywhere,
except in the middle of a word or a number, or between the : and the = of
the : = symbol.

In Pascal all declarations are put first, before any executable state-
ments. In this program the declaration part is lines 3 and 4, and the executa-
ble part is lines 5 through 9.

All variables used in a program must be declared in a VAR part. Line 3
starts the VAR part: in line 4 the identifiers I, J, and SUM are declared to be
integer variables. There are two types of numeric quantities in Pascal: IN-
TEGERs (whole numbers) and REALs (which contain a decimal point).
There is no default type—any variable you use, you must declare.

Some words in Pascal are reserved, that is, they cannot be used as
variable names. The words VAR, BEGIN, and END in the above example
are reserved words.

The executable body always starts with the keyword BEGIN (line 5)
and ends with the word END followed by a period (line 9).

READ (line 6) is a call to a built-in procedure to read values from an
input file and assign them to variables (in this case. I and J). WRITELN (line
8) is a built-in procedure to print out values.

The assignment statement (line 7) uses : = rather than = it says to set
SUM to the sum of 1 and J. The symbol = means equality. not assignment,
and is used in other places.

Semicolons (;) are used to separate one statement from the next, and
one declaration from the next. In addition, there is a semicolon between the
last declaration and the first BEGIN. This rule is conceptually simple. but
difficult to apply: Section 2.2 gives some guidelines for placing semicolons.

PL/I programmers should note that semicolons are used differently in
Pascal than in PL/I.

The example program is shown in all capital letters. On computer sys-
tems having lowercase letters as well, you can usually use either case, or
mix them however you choose. and Pascal ignores the difference (except in
quoted strings). Lowercase is easier for humans to read, and is preferable.
This text uses all uppercase because so few machines provide lowercase.

Pascal is a free-format language. You do not need to start certain things
in certain columns, or put exactly one statement per line. In fact, the Pascal
compiler *‘sees’’ your program as one lone line, with the line boundaries and
comments replaced by spaces. You could rewrite the above example as

PROGRAM ADD(INPUT,OUTPUT);
(+ EXAMPLE 1: Program to add two numbers. =)

CONVENTIONAL DECLARATIONS IN PASCAL 5

VAR 1,J,SUM:INTEGER;BEGIN READ(I,J);
SUM : =1+ J;WRITELN(SUM)END.

and the compiler would be just as happy (but your boss wouldn’t).

Pascal is free-format in order to allow you to space and indent in such a
way as to make your programs more readable. Increased readability will
make your programs easier to debug and to maintain.

There are several different indentation schemes in vogue, and one can
argue endlessly about the best way to indent. The scheme the author prefers
is used throughout this text without further comment; but whatever indenta-
tion scheme is used should be followed consistently. Perhaps the least help-
ful indentation scheme is to start every line in the same column, as is often
done in Fortran.

1.2 CONVENTIONAL DECLARATIONS IN PASCAL

This section describes those declarations in Pascal which should be familiar
because they are similar to declarations in most other languages. All vari-
ables used in the program must be declared in the VAR section. Declarations
have the following syntax,

list of variables : type

where the type may be any of the following: INTEGER, REAL, CHAR
(single character), BOOLEAN, or one of the other types in Pascal such as
arrays. Variables of type CHAR may have as value any single character.
Single character constants are written enclosed in single quote marks, for
example, ‘A’. BOOLEAN variables (called LOGICAL variables in Fortran)
can take on either of the values TRUE and FALSE.

VAR
I, J: INTEGER; (x two integer variables =)
X, Y, Z: REAL; (+ three real variables =)
K: INTEGER; (+ another integer variable =)
CH: CHAR; (+ a character variable)
P, Q, R: BOOLEAN; {x three boolean variables)
VEC: ARRAY [1..10] OF INTEGER; (+ see below)

BOX: ARRAY [1..10, —5..5] OF REAL;

VEC is declared to be a one-dimensional array of ten integers; those
integers can be referenced by VEC[1], VEC]2], ..., VEC[10]. The notation
1..10 means that the allowable subscripts may range from one to ten,
inclusive.

BOX is declared to be a two-dimensional array of real numbers. The
first subscript can take on any value from one to ten inclusive, while the
second subscript can take on any value from —5 to S inclusive. The elements

6 CHAPTER 1: AN OVERVIEW OF PASCAL

are referred to in the program by BOX[1, —5], ..., BOX[10, 5]. Arrays may
have any number of dimensions.

In Standard Pascal, there is no way to initialize variables. In Pascal
8000, however, variables may be initialized in the VALUE section, which
must come after the VAR section. Every variable occurring in the VALUE
section must previously have been declared in the VAR section. The syntax
of an initialization is

variable := value

(Note the use of : = rather than :.) For example.

VALUE
X = 2.7929;
CH := "x7;

1.3 CONVENTIONAL STATEMENTS IN PASCAL

We have already seen examples of the assignment and the procedure call
statements. (READ and WRITELN are procedure calls.) Here are some
other Pascal statements.

IF condition THEN statement

The condition is a Boolean expression, that is, an expression which
results in a value of TRUE or FALSE. If the value of the condition is
TRUE, then the statement is executed; otherwise it is not.

IF condition THEN statement | ELSE statement 2
If the value of the Boolean condition is TRUE, statement I is executed; if
the condition is FALSE, statement 2 is executed.
WHILE condition DO statement
This is a loop with the test at the top. The condition is evaluated; if TRUE,
the statement is executed, and the program loops back to test the
condition again. If FALSE, the loop exits, which means that control

passes to the next statement. Note that if the condition is false initially,
the loop exits immediately without ever having executed the statement.

REPEAT sequence of statements UNTIL condition

This is a loop with the test at the bottom. The sequence of statements is
executed first, then the condition is tested. If FALSE, the program loops
back to execute the sequence of statements again; if TRUE, the loop
exits.

Note three differences between the WHILE and REPEAT loops.
1 The body of the WHILE loop consists of a single statement, while the

CONVENTIONAL STATEMENTS IN PASCAL 7

body of the REPEAT loop consists of a sequence of statements. You
will soon see that this difference is not important.

2 The body of a WHILE loop may be executed zero times (that is, not
at all), but the body of a REPEAT loop is always executed at least
once.

3 The condition of a WHILE loop is false after the loop exists; the
condition of a REPEAT loop is true after the loop exits.

There is reason to believe that REPEAT loops are harder to use and that
people make more errors with them than with WHILE loops. Hence, all
things being equal, you should prefer WHILE loops to REPEAT loops.

FOR variable := initial value TO final value DO statement
This is a loop under count control. The variable is a simple unsubscripted
variable; the initial value and final value can be any expressions
resulting in a value of the same type as the variable. The loop executes
the statement once for each of the values initial value through
final_value, with a step size of one. If the initial_value is greater than the
final value, the statement is never executed.
FOR variable : = initial value DOWNTO final value DO statement
This statement is like the preceding, except that the step size is minus one,
rather than one. If the initial value is less than the final value, the
statement is never executed.

Note that in all of the preceding statement types, the word statement
refers to one single statement. Often it is desirable to use a sequence of
statements, rather than just a single statement. The ‘‘fat parentheses’” BE-
GIN and END make this possible.

BEGIN sequence of statements END
BEGIN and END enclosing a sequence of statements form

a single, compound statement. (Note that neither
keyword by itself is a complete statement.)

Input/output in Pascal is trivially simple. Procedure READ takes any
number of variable names as parameters, and reads that many values from
the input; it can read integers, real numbers, or characters. Numeric values
need not go in any particular columns, but must be separated by at least one
space. READ treats a line boundary as if it were a space.

Procedure WRITELN takes any number of expressions as parameters,
and writes out the value of those expressions on a single line. (Procedures
WRITE and READLN also exist, but are less frequently used; see Section
8.3.)

