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PREFACE

The purpose of this textbook is to present trigonometry in the
language and spirit of modern mathematics. The vocabulary of ele-
mentary mathematical analysis is used exclusively throughout.

The over-all plan of the book is simple. The first eight chapters
emphasize the theory of the trigonometric functions; the final three
chapters emphasize applications of trigonometry. Logarithms and re-
lated topics are discussed in appendices, which may be tapped or
not depending upon individual requirements. Coordinate methods
are used wherever possible, particularly in formal proofs. Nearly all
conventional topics are discussed, but the arrangement and approach
are intended to focus attention on periodicity and graphs rather than
on the traditional right triangle.

There are many problems which stress the importance of trigo-
nometry in various fields of science and engineering. The final section
in each of Chapters 1, 4, 7, and 10 is devoted to a Special Topic,
which is related to the material in the chapter but is not essential to
the continuity of presentation. These topics have been chosen to
demonstrate applications of trigonometry to physical problems both
ancient and modern.

The author gratefully acknowledges his indebtedness to teachers,
colleagues, and friends who have influenced the preparation of this
textbook. In addition, a special word of thanks is due both Dr. A. A.
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Bennett for his many constructive criticisms of the original manu-
script, and to the Prentice-Hall organization for their courteous and

efficient attention in the production of this book.
H.S., Jr.
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INTRODUCTION

The word “‘trigonometry’” is a combination of two Greek words
that, taken together, mean ‘“triangle measurement.” In this sense, the
study of trigonometry has an unbroken history reaching from its
source in ancient Greece to the present day. But the name of our
subject, although historically appropriate, is deceptive, for triangle
measurement is not the only important application of trigonometry
in the modern world. It is our purpose in this introduction to sketch
the origin of trigonometry and to indicate its uses, both ancient and
modern.

1. EARLY HISTORY

In its earliest stages trigonometry was closely related to geometry.
In fact, it seems to have originated more than 2,000 years ago in
Egypt and Greece with the application of geometric principles to
problems arising in land surveys and astronomy. The individuals
associated with its foundation as a systematic study are Hipparchus
(Greek, second century B.c.) and Ptolemy (Greek, residing in
Alexandria, c. A.p. 150). Isolated instances of the use of trigonometric
ideas appear much earlier. The Egyptians, for example, had made use
of certain trigonometric rules in re-establishing along the Nile River
the boundary markers and lines usually destroyed by annual floods.
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2 | INTRODUCTION

Hipparchus is generally credited with developing this and many
other examples into a coherent theory by which more difficult prob-
lems could be solved. Most persons unacquainted with classical Greek
history are amazed to learn how far advanced scientific knowledge
was In that age. To illustrate, by the time of Hipparchus the Greeks
had already discovered that the earth is spherical, and by geometry
and trigonometry they had estimated its diameter and that of the
moon with surprising accuracy. These discoveries were afterward
forgotten or overlooked for more than a thousand years, and they
were not popularly revived until the time of Columbus.

Ptolemy, who is famous primarily as an astronomer, refined the
theory inherited from Hipparchus. After Ptolemy there were few
important additions to trigonometry until about the seventeenth
century. Since that time, new mathematical ideas have exerted an
entirely different and nongeometrical influence on the subject.

2. PERIODIC EVENTS

The physical world is dominated by periodic events: the alternations
of day and night, the phases of the moon, the appearance of certain
comets, the flow and ebb of the tides, and, on a smaller scale, the
swinging of a pendulum, the operation of the pistons in an internal
combustion engine, the rotation of the wheels in a watch movement
— these are all examples of events that occur periodically (or very
nearly so). One of the basic purposes of mathematics is to furnish a
symbolic language through which events in the physical world may
be concisely and elegantly described. It is natural, then, to look for a
mathematical scheme by which periodic motions can be represented.
The algebraic ideas with which we may already be familiar are not
well suited to the description of periodic motions. On the other hand,
it will become apparent as the subject is developed that trigonometric
expressions are particularly well adapted to this purpose.

3. GENERAL COMMENTS

Trigonometry encompasses in a single theory two widely different
kinds of application. The methods of trigonometry can be used on the
one hand to study the numerical relationships between the sides and
angles of triangles, and on the other hand to analyze problems relating
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to periodic events. Questions of the former type arise, for example,
in surveying, astronomy, navigation, and mechanics; questions of the
latter type oceur in the study of electrical phenomena, the theory of
vibrations, and in many other branches of modern science and
engineering,

4, SPECIAL TOPIC: THE SIZE OF THE EARTH

For almost a thousand years after the time of Alexander the Great,
the city of Alexandria, founded by him near one mouth of the Nile
River, was unparalleled as a center of learning. About 300 B.C. a
university was established there and a great library built, into which
poured many of the writings and observations of the ancient world.
During their lifetimes, Archimedes, Euclid, Ptolemy, and probably
Hipparchus were associated with the university, along with many
other lesser known scholars. One of these was Eratosthenes (Greek,
275-194 B.c.), who for a long period was university librarian at
Alexandria.

Long before the time of Eratosthenes, convincing arguments had
been given that the earth is spherical. Two of these arguments were:
(1) the shadow of the earth castsen the moon during an eclipse always
appears circular, and @) a relftivély small change in position north
or south on the earfh)s surface prédugces an appreciable change in the
height of certain stars above the hotizon. Belief that the earth is a
sphere led Eratosthen@s to search for/a method of finding its size.

Eratosthenes discevered in hi§ Aibrary records that there was a
most unusual phenoménen_asseciated with a deep well near Syene,
an Egyptian city that he believed to be about 500 miles due south
of Alexandria. (He used, of course, a different measure of distance.)
At noon on only one day of the year, the sun could be observed to
shine straight down the well, producing a reflection on the water.
He reasoned that when this occurred the sun, the well, and the earth’s
center lay on the same straight line. He was able to determine that,
at the same time as the sun reflected in the well, a vertical column
in Alexandria cast a shadow indicating that the sun was 7°12’ south
of zenith. By assuming that Alexandria and Syene lie along the same
meridian and that the sun’s rays are parallel, he could then determine
the earth’s circumference (Fig. 1.1).
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Fig. 1.1

Knowing that the angle at the earth’s center is 7°12’ and that this
angle subtends an arc of length 500 miles, he reasoned that the entire
circumference C must be given by the equation

C 360°

T or C = (500)(50) = 25,000 miles.
5 7.2°

| Suggested Exercises |

1. The city of Rhodes is about 400 miles directly north of Alexandria.
A bright star, Canopus, is barely visible above the horizon at Rhodes, whereas
at Alexandria its highest point is about 5°30" above the horizon. Draw a
sketch of this situation and estimate the circumference of the earth. (This
method was used over a century later by Posidonius, another Alexandrian
scholar.)

2. Hipparchus calculated that the distance from the surface of the earth
to the moon is about 331 earth diameters. Using this information, with
Eratosthenes’ value for the size of the earth, estimate the diameter of the
moon if it is observed near zenith to intercept an arc of °.

3. How do modern values compare with those found here for earth diameter,
moon diameter, and distance from earth to moon?

4. Assuming the earth to be 93,000,000 miles from the sun, what is approxi-
mately the diameter of the sun if it is observed to subtend an angle of 1°?



FUNDAMENTAL
CONCEPTS

In this chapter we discuss several concepts essential to an under-
standing of modern mathematics. The vocabulary introduced in this
chapter will be used extensively in the pages ahead.

1. SETS

In the study of mathematics it is frequently convenient and indeed
necessary to refer specifically to a whole collection of distinet objects.
The objects in the collection are characterized by sharing in common
a particular property that distinguishes each from objects not in the
collection. A collection that is to be considered as a whole 1s called a set,
and the objects in the collection are called elements of the set. Each
element is said to belong to the set, and the set is said to contain each
element.

We shall postulate the existence of one set containing no element at
all, which for this reason is called the null set or the void set. In certain
more advanced mathematical topics this set behaves very much like
the zero in our ordinary system of numbers.

ExampLE 1. The positive integers less than 100 comprise a set.
The elements of this set could be written out explicitly without too
much labor, but mathematicians prefer to denote this set by the
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6 | FUNDAMENTAL CONCEPTS

symbol {1,2, -++ 99}, Tt is evident that this set contains exactly
99 elements.

ExampLE 2. We may also think of all positive integers as comprising
a set. In this case, of course, it is impossible to list all the elements
explicitly, and the usual symbolis {1, 2, - - - }.

When a particular set is to be mentioned several times in the course
of a discussion, it is desirable to assign some symbol as an abbreviation
for the set. Capital letters are frequently used as such abbreviations.
Let M and N be two sets. We say that M and N are equal (M = N)
if each element of M is also an element of N and, furthermore, if each
element of N 1is also an element of M. In other words, M and N are
equal if they contain precisely the same elements.

There is an essential difference between the sets in Examples 1 and 2
that we may indicate in the following intuitive way. Suppose it were
possible to line up, either physically or by imagination, all the elements
of a given set. If we then start counting these elements, one of two
possibilities may occur. A definite number is reached beyond which
no more are needed because each element has already been counted;
or no such number is reached because there are always elements of the
set that have not been previously counted. In the former case the set
is called finite, in the latter case the set is called infinite.

| Problem Set 2.1 |

1. How else can you describe the set of all states larger than Texas?
2. How else can you describe the set of all planets closer to the sun than
is the earth?
3. Is the set {1, 2, 3} equal to the set {2, 1,3 }?
4. List all different three-digit numbers formed from the digits 1, 2, and 3,
(a) allowing repetitions (for example, 111 or 122),
(b) not allowing repetitions.
5. Specify the elements belonging to the set of all fractions a/b for which a
can be any of the numbers 1, 3, or 5, while b can be either 2 or 4.

6. Give an intuitive argument for the fact that the set of fractions {1, %,
§, +- -} is infinite.

ReMARk 1. Finite and infinite sets may be defined in the following way.

If the elements of a set A are related to the elements of a set B in such a way
that to each element of A there corresponds one and only one element of B, and
if each element in B 1is related to one and only one element of A, then A and B
are said to be in a one-to-one correspondence.
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Let A be a set. If C is a non-void subset of A (that is, each element of
C'is also an element of A), let B be the set consisting of those elements of
A that are not in C. If for some such C there exists a one-to-one corre-
spondence between A and B, then A 1is called infinite; otherwise A is called
finite.

REmaRrk 2. Let A be the set of all positive integers, let C be the set of all
odd positive integers, and let B be the set of all even positive integers.
We establish a correspondence between A and B as follows: to each element
of A corresponds its double. Thus 1 is related to 2, 2 to 4, 3 to 6, and so on.
This correspondence is one-to-one, and C is non-void, hence the set of all
positive integers is infinite.

7. Show by writing out all possible correspondences that the set { 1,2, 3}
is finite.

8. Prove that the set given in Problem 6 is infinite.

9. Show geometrically that the set of all points on a line is infinite.

2. REAL NUMBER SYSTEM

We shall designate the set consisting of zero and the positive integers
as the set of natural numbers, to be denoted by N. Thus N = {0, 1,
2,3, -+ } When the operations of subtraction and division are
applied to the elements in N it appears immediately that this set
must be extended in order to make these operations meaningful for
all numbers. For example, 5 — 7 is not a natural number, and
% is not a natural number. To overcome this difficulty, we extend
the set N by defining first the set of whole numbers and next the set
of rational numbers.

The set consisting of zero and the positive and negative integers is called
the set of whole numbers, to be denoted by W.

Any number that can be represented in the form a /b, where a and b are
elements of W and b # 0, 1s called a rational number. A rational
number of the form a/1 may be considered identical to the whole
number a. Thus, in a sense, the rational numbers include the whole
numbers. With the rational numbers we have arrived at a set so large
that the operations of addition, subtraction, multiplication, and
division (with one exception) are all possible within the set. These
four are called the elementary rational operations of arithmetic.
It is easy to show that division by zero leads to contradiction, therefore
we exclude a/0 as a number.



