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Praise for Enterprise Patterns and MDA

“The burgeoning field of Model Driven Architecture tools and worldwide support for the
Unified Modeling Language are finally being met with high-quality books that explain standard
modeling techniques in a way any developer can follow. This book meets an urgent need
squarely and clearly, and explains with copious examples a powerful approach to building usable
(and reusable!) assets and applications. Every enterprise developer needs this book.”

—Richard Mark Soley, Ph.D.
Chairman & CEO
Object Management Group, Inc.

“I've never seen a system of business patterns as detailed as this one. The completeness that
Arlow and Neustadt provide in these patterns is impressive. The explanations for why the
patterns are formed the way they are and how they’re interconnected are incredibly thorough.
The patterns presented here have the potential to impact business applications in the same
way the ‘Gang of Four’ patterns have impacted general software development.”

—Steve Vinoski

Chief Engineer of Product Innovation
IONA Technologies

“[Enterprise Patterns and MDA is a] detailed, yet very readable, guide to designing business
applications using reusable model components and Model Driven Architecture. It deserves a
place on every application designer’s desk.”

—Andrew Watson
Vice President and Technical Director
Object Management Group, Inc.

“Design patterns are generally acknowledged as an effective approach to developing robust
and highly reusable software. Now that Model Driven Architecture is raising software design
to ever-higher levels of abstraction, it is only natural that pattern concepts should find
application in advanced modeling techniques. With this book, Arlow and Neustadt have
greatly advanced the state of the art of MDA by defining both a theory and a methodology
for applying the concept of Archetype Patterns to business software modeling.”

—John Poole
Distinguished Software Engineer
Hyperion Solutions Corporation
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Foreword

Not 200 meters from where I sit, there was a revolution.

Responding to a call from a famous night rider, a handful of men turned
out in the middle of the night to protect their families, their lands, and a set of
“human rights” they had in fact just discovered. Their intolerable treatment by
a distant tyrant caused them to risk everything—their very lives—to protect
their way of life. Some paid the ultimate price that morning, sending a message
heard around the world, becoming the beacon of revolution that was to rever-
berate throughout the Age of Enlightenment down to today.

They wanted nothing less than to create a better society, a just society, dif-
ferent than what they saw in the distant tyrant’s domain. They wanted to
change everything, wipe the slate clean, and dissolve the political bonds that
bound them to their past. Leaning on the previous hundred years of political
philosophy, they believed themselves to have what would soon be termed “cer-
tain inalienable rights,” and they meant to assert those rights.

The result was years of painful fighting, a trans-oceanic war between the
world’s greatest superpower and a band of rebels, led by a figure termed a “traitor”
by the ranks of that superpower. Against all odds, the rebels won the war in a
mere eight years, winning a place in history and control of their own destinies.

Yet . .. more than 200 years later, here I sit in that same country drinking a
cup of coffee in my local coffechouse, where stood 200 years ago another cof-
feehouse. Though this country and its former tyrannical, imperial owner have
been separated for more than two centuries, we still share the same language.
The legal systems are nearly identical; the political systems, while different,
have strong and clear similarities. The cultures are closely related, closely
enough to share the same sources of entertainment. In fact, these one-time ene-
mies are considered to have a “special relationship” that transcends all other
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diplomatic relationships, even to the exclusion of the closest neighbors and
trading partners of both countries.

The message is clear: sometimes at least, revolutions are evolutionary. The
urge to reinvent, to clear the decks and start again, quite often instead reifies an
extant system—in this case, personal freedom in the context of a precedent-
based legal system structured around a government of the people, for the peo-
ple, and by the people.

Moving our focus from political history to the structure of scientific and in-
dustrial revolutions, we find much the same situation. Thomas Kuhn's view of
the world is constantly invoked in the information technology industry, but
more often as not, IT “paradigm shifts” are in fact only terminology shifts.

Model Driven Architecture (MDA), the vision of the Object Management
Group (OMG) to move software development out of the depths of handicraft
up to the heights of engineering, without doubt represents a paradigm shift. By
focusing on architecture and encapsulating design “on paper” the way building
architects capture blueprints, the OMG aims not only to lower initial software
development costs but, more importantly, to decrease the ever-increasing costs
of software integration and maintenance (which claim some 90 percent of soft-
ware lifecycle resources today). At the same time, MDA starts with a graphical
language rather than a textual one and forces developers to design before coding
(or even instead of coding). Clearly there’s a revolution under way.

At the same time, however, MDA represents just another level of abstrac-
tion, another level of compilation. The authors of the tome in your hands call
MDA a “revolution” akin to the late-twentieth-century move from procedural
to object-oriented programming languages; but even that was only another
compiler-based level of abstraction (few instruction sets are object-oriented; ob-
ject-oriented languages must be compiled to those non-OO instruction set ar-
chitectures). In fact, the MDA revolution is already delivering benefits, without
discarding that which came before; that is, it is an evolutionary revolution.

Every revolution, regardless of how well it replaces or expands the existing or-
der, must have a language; political revolutions have their constitutions and decla-
rations, and the MDA revolution focuses on software processes and assets. This
book, while it briefly presents a software development process, focuses primarily
(and in prescient and clear depth) on filling out a set of patterns to simplify the
development of software. This book is, effectively, your dictionary of the new lan-
guage of MDA, a set of basic blueprints that will accelerate the construction of
the building you have in mind. Builders don’t all need to reinvent steel I-beams,
and software developers don't need to reinvent the product catalog.
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In sum, you hold in your hands the keys to an evolutionary revolution, one
that is already having its impact on the software development world. I must
confess to a personal failing, that I find joy in reading encyclopedias and dictio-
naries. As I sip my coffee near the site of an evolutionary revolution, it’s hard
not to enjoy reading the declaration of another.

—Richard Mark Soley, Ph.D.
Lexington, Massachusetts, U.S.A.
October 2003
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Introduction

About this book

We have called this book Enterprise Patterns and MDA—DBuilding Better Soft-
ware with Archetypes Patterns and UML. The first part of the title sets the theme
for the book as a whole: we aim to provide you with a set of essential patterns
for enterprise computing. These are not technical “design patterns”; rather, they
are essential business patterns that are found, at least to some degree, in virtually
all enterprises. You should find that one or more of these patterns are immedi-
ately applicable in software development projects. These patterns are high-value
model components that you can easily use in your own UML models. Each
pattern provides a solution for understanding and modeling a specific part of a
business system. Furthermore, we show you how you can use the emerging dis-
cipline of Model Driven Architecture (MDA) to apply these patterns with a
high degree of automation.

The second part of the title sets out how we achieve our goal of producing a
set of patterns that are useful at the enterprise level. We introduce the new con-
cepts of archetypes and archetype patterns in order to define a level of abstraction
optimized for reuse and to the automation possibilities of MDA. These patterns
are documented using the technique of /iterate modeling, which embeds the pat-
terns, expressed as UML models, in a narrative such that the patterns can be un-
derstood, validated, and adapted even by nontechnical readers.

This is a practical book that gives you a useful set of archetype patterns and
the theory you need to use them effectively in an enterprise context. We hope
that this will save you a great deal of time and effort in your software develop-
ment projects.

These patterns are valuable—a similar, but much less mature, set of patterns
was recently independently valued at about $300,000 by a blue-chip company.



Using any one of these patterns, or even a pattern fragment, may save you many
days or months of work. Perhaps even more important than this saving is the fact
that the knowledge engineered into each archetype pattern may prevent you from
making costly and time-consuming mistakes!

All of the patterns presented in this volume work together harmoniously
and so provide a unified pattern language for talking about selling systems. This
harmony greatly adds to their value.

At the time of this writing in 2003, we think we are at the start of a revolu-
tion in software development. Much as the 1990s saw an increase in the level of
abstraction from procedural to object-oriented (OO) code, we believe that this
decade will see a further, and more significant, increase in the level of abstrac-
tion. This will be a change from code-centric software development to model-
centric software development through MDA.

We hope that the conceprs, techniques, tools, and patterns that we describe
in this book will help us all to make this revolution in software development a
reality.

Our vision

One of the reasons this book came about was through boredom! After model-
ing for many years, we decided that we were often just doing the same old thing
over and over again. At the right level of abstraction, most businesses seem to be
made up of the same semantic elements—Customer, Product, Order, Party,
and so on. In fact, so pervasive are some of these elements that it led us to the
notion of business archetype patterns.

We speculated that most business systems could be assembled, like Lego
bricks, from a sufficiently complete set of archetype patterns.

The essence of our vision is that archetype patterns should be treated as a
type of “model component” that can be taken off the shelf, customized, and in-
stantiated in your own models. This process can be done manually, but ideally
it should be automated o as high a degree as possible by using an MDA tool.

Today, you can use a GUI builder to create graphical user interfaces rap-
idly from GUI components. The work we describe in Chapter 2 enables you
to construct semantically correct and verifiable UML models rapidly from
platform-independent, generic model components with a high degree of auto-
mation. We believe that this may be the future of software development. We
call this component-based modeling.

This is reuse writ large—software systems are not considered to be composed
of reusable classes, reusable code components, or even reusable subsystems, but
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rather from the reusable semantic elements that are archetype patterns. In fact, to
a great extent the essence of the business system lies in its archetypes and their
patterns, rather than in any code or design artifacts. Coding practices, design
practices, and even architectures come and go with technology changes, but the
archetypes themselves survive, largely unchanged, sometimes over millennia.

Why we haven’t done it sooner

We have wanted to write this book for several years, but there have been obsta-
cles that we have only recently overcome.

® The state of the art of UML modeling. Until the recent MDA initiative
of the Object Management Group (OMG), we did not really have the
conceptual tools necessary to describe archetype patterns in good form.

® The problem of pattern variation. Business patterns often need to adapt
their forms to a specific business context. We have now formulated a
simple solution to this problem that allows us to create archetype pat-
terns that are adaptable to different business environments.

® The problem of communicating UML models to a wide audience. In
fact, we've had a good solution to this for a few years now, in the form
of literate modeling (described in Chapter 3).

@ UML modeling tool support. It’s all very well presenting a theory of ar-
chetype patterns, but such a theory is useful to the average software en-
gineer only if it can be put into practice. Modeling tools have recently
come onto the market that can accommodate our requirements for ar-
chetype pattern automation.

The structure of this book

There are four main threads to this book:

1. The theory of archetypes and archetype patterns (Chapters 1 and 2)

2. Pattern automation using MDA (Chapter 2)

3. Increasing the business value of UML models by making them accessi-
ble to a wide audience through literate modeling (Chapter 3)

4. A valuable pattern catalog that you can use in your own models

(Chapter 4 onward)

R R D L L L D ADR DY
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Chapters 1, 2, and 3 provide you with the theoretical basis for the rest of
the book, and you will find that they cover a lot of new material.

In Chapter 1 we describe a new approach to dealing with the problem of
pattern variation—how to adapt patterns for different usage contexts.

In Chapter 2 we show you how you can automate the process of using arche-
type patterns with an MDA-enabled UML modeling tool. The first two chapters
are intimately related. The pattern automation described in Chapter 2 depends
on the theory of archetypes and archetype patterns presented in Chapter 1.

Chapter 3 describes the technique of literate modeling that you can use to
document your patterns. This chapter is pretty much self-contained. Literate
modeling is a powerful way to communicate UML models to a wide audience.

Each of the first three chapters contains a summary that reiterates the key
information in the chapter in a very concise outline form. This is great for revi-
sion and it is also a useful source of bullet points for presentations.

The pattern catalog can stand alone. If you choose to use the book prima-
rily as a pattern catalog (Chapter 4 to Chapter 12), you can skip much of the
theoretical background in the first three chapters. Use the pattern catalog as a
valuable resource for your own models. Each of the pattern chapters ends with a
brief summary that lists the key concepts and archetypes introduced in that
chapter. Again, we do this in outline form.

Having said that the pattern catalog can stand alone, we believe that you
will be able to apply the patterns much more effectively if you have at least a
basic understanding of archetype theory first. You can find all you need to
know in Chapter 1. All the patterns in the pattern catalog are a direct result of
the application of the theories and techniques described in the first three chapters.
The notions of archetypes, archetype patterns, pattern configuration, and liter-
ate modeling have allowed us to create much more complete and robust patterns
than otherwise would have been possible.

Finally, we provide a glossary of archetypes, a bibliography, and a complete
index.

How to use this book

In this section we present roadmaps for the various ways in which you might
wish to use this book and some recommendations about how you might like to
approach reading it.

Please be aware that this is 7207 a beginner’s book, so there may be prerequi-
sites for some of the roads that you may want to travel. None of these prerequi-
sites are particularly difficult to achieve, but it’s always worth ensuring that you
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have what you need, or at least know where to get it, before setting out on the

journey!
Table 1
Your goal in Useful
You are reading this book Prerequisites references Roadmap
OO analyst/designer I want to understand the A working knowledge  [Arlow Chapter 1
OO programmer theory of archetypesand ~ of UML 2001]
Architect archetype patterns
OO analyst/designer [ want to see how MDA A working knowledge ~ [Arlow Chapter 1
OO programmer tools can be used to auto-  of UML (some 2001] Chapter 2
Architect mate the use of archetype  knowledge of MDA (Kleppe
rehutec (and other) patterns would also be helpful) 2003]
OO analyst/designer [ want to improve my A working knowledge  [Arlow Chapter 3
Archifrect UML models and see how of UML 2001]
[ can make them available
to a wider audience
OO analyst/designer [ want to reuse the arche- A working knowledge  [Arlow Pattern
Architect type patterns in my own of UML 2001] catalog
models in an informal A working knowledge
way by taking patterns, of the business domain
Pattf.:m fragments, or in which you intend to
just ideas apply the patterns
OO analyst/designer I want to reuse the arche- A working knowledge  [Arlow Chapter 1
Arclirece type patterns in my own of UML 2001] Chapter 2
models in a formal way A working knowledge Chapter 3
by understanding the ofthe bisiness domain Pattern
theory behind them in which you intend to catalog
apply the patterns
OO analyst/designer I'want to use the pattern ~ Some knowledge of [Arlow Pactern
OO programmer catalog to help me UML is desirable, but if 2001] catalog

Architect
Business analyst
Project manager

Software engineer

understand a particular
business domain

you don’t have this, you
should still be able to
understand most of the
text of the literate
models
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In Table 1 we (naturally) reference our previous book, UML and the Uni-
fied Process, as a suitable source for readers who need some introductory mate-
rial on UML. When we wrote that book, we always had in mind that it could
serve as a useful precursor to more advanced texts such as this.

The pattern chapters contain a lot of information, and you may find it
helpful to proceed as follows when reading each chapter.

1. Read the chapter’s section on business context. As its name suggests,
this section provides information that sets the pattern in its context
within the business world.

2. Read the chapter’s summary section. This will give you a clear idea of
exactly what you can find in the chapter.

3. Look at the chapter roadmap. This will give you an overview of the
archetypes and their relationships, and where they are discussed in
the text.

4. Read the chapter.

Conventions

We have used the following conventions.

Archetypes, pleomorphs, attributes, operations, relationship names, relation-
ship role names, and code fragments are in this font: AnArchetype, AP1eomorph,
anAttribute, anOperation(), aRelationshipName, aRoleName, some code.

Archetype definitions look like this:

The Money archetype represents an amount of a specific Currency. This Currency
is acceptedIn one or more Locales.

Term definitions look like this:

% A business process is a sequence of business activities that, when executed, is de-
signed to lead to some business benefit.
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