Ranpomizep
ALGORITHMS




Randomized Algorithms

Rajeev Motwani Prabhakar Raghavan

Stanford University IBM Thomas J. Watson
Research Center

CAMBRIDGE

&) UNIVERSITY PRESS




Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

40 West 20th Street, New York, NY 10011-4211, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

(© Cambridge University Press 1995
First published 1995

Printed in United States of America

Library of Congress Cataloguing-in-Publication Data

Motwani, Rajeev.
Randomized algorithms / Rajeev Motwani, Prabhakar Raghavan.
p. cm.

Includes bibliographical references and index.
ISBN 0-521-47465-5
1. Stochastic processes-Data processing. 2. Algorithms.

I. Raghavan, Prabhakar. II. Title.

QA274.M68 1995

004'.01'5192-dc20 94-44271

A catalog record for this book is available from the British Library.

ISBN 0-521-47465-5 hardback

TAG



The Stanford—Cambridge Program is an innovative publishing venture result-
ing from the collaboration between Cambridge University Press and Stanford
University and its Press.

The Program provides a new international imprint for the teaching and
communication of pure and applied sciences. Drawing on Stanford’s eminent
faculty and associated institutions, books within the Program reflect the high
quality of teaching and research at Stanford University.

The Program includes textbooks at undergraduate level, and research mono-
graphs, across a broad range of the sciences.

Cambridge University Press publishes and distributes books in the Stanford—
Cambridge Program throughout the world.



Randomized Algorithms



Preface

THE last decade has witnessed a tremendous growth in the area of randomized
algorithms. During this period, randomized algorithms went from being a tool in
computational number theory to finding widespread application in many types
of algorithms. Two benefits of randomization have spearheaded this growth:
simplicity and speed. For many applications, a randomized algorithm is the
simplest algorithm available, or the fastest, or both.

This book presents the basic concepts in the design and analysis of randomized
algorithms at a level accessible to advanced undergraduates and to graduate
students. We expect it will also prove to be a reference to professionals wishing
to implement such algorithms and to researchers seeking to establish new results
in the area.

Organization and Course Information

We assume that the reader has had undergraduate courses in Algorithms and
Complexity, and in Probability Theory. The book is organized into two parts.
The first part, consisting of seven chapters, presents basic tools from probability
theory and probabilistic analysis that are recurrent in algorithmic applications.
Applications are given along with each tool to illustrate the tool in concrete
settings. The second part of the book also contains seven chapters, each
focusing on one area of application of randomized algorithms. The seven
areas of application we have selected are: data structures, graph algorithms,
geometric algorithms, number theoretic algorithms, counting algorithms, parallel
and distributed algorithms, and online algorithms. Naturally, some of the
algorithms used for illustration in Part I do fall into one of these seven categories.
The book is not meant to be a compendium of every randomized algorithm
that has been devised, but rather a comprehensive and representative selection.
The Appendices review basic material on probability theory and the analysis
of algorithms.

ix



PREFACE

We have taught several regular as well as short-term courses based on the
material in this book, as have some of our colleagues. It is virtually impossible
to cover all the material in the book in a single academic term or in a week’s
intensive course. We regard Chapters 1-4 as the core around which a course may
be built. Following the treatment of this material, the instructor may continue
with that portion of the remainder of Part I that supports the material of Part II
(s)he wishes to cover. Chapters 5-13 depend only on material in Chapters 1-4,
with the following exceptions:

1. Chapter 5 on Probabilistic Methods is a prerequisite for Chapters 6 (Random
Walks) and 11 (Approximate Counting).

2. Chapter 6 on Random Walks is a prerequisite for Chapter 11 (Approximate
Counting).

3. Chapter 7 on Algebraic Techniques is a prerequisite for Chapters 14 (Number
Theory and Algebra) and 12 (Parallel and Distributed Algorithms).

We have included three types of problems in the book. Exercises occur
throughout the text, and are designed to deepen the reader’s understanding of
the material being covered in the text. Usually, an exercise will be a variant,
extension, or detail of an algorithm or proof being studied. Problems appear
at the end of each chapter and are meant to be more difficult and involved
than the Exercises in the text. In addition, Research Problems are listed in the
Discussion section at the end of each chapter. These are problems that were
open at the time we wrote the book; we offer them as suggestions for students
(and of course professional researchers) to work on.

Based on our experience with teaching this material, we recommend that the
instructor use one of the following course organizations:

e A comprehensive basic course: In addition to Chapters 14, this course would
cover the material in Chapters 5, 6, and 7 (thus spanning all of Part 1).

e A course oriented toward algebra and number theory: Following Chapters 1-4,
this course would cover Chapters 7, 14, and 12.

e A course oriented toward graphs, data structures, and geometry: Following
Chapters 14, this course would cover Chapters 8, 9, and 10.

e A course oriented toward random walks and counting algorithms: Following
Chapters 14, this course would cover Chapters 5, 6, and 11.

Each of these courses may be pruned and given in abridged form as an intensive
course spanning 3-5 days.

Paradigms for Randomized Algorithms

A handful of general principles lies at the heart of almost all randomized
algorithms, despite the multitude of areas in which they find application. We
briefly survey these here, with pointers to chapters in which examples of these

X



PREFACE

principles may be found. The following summary draws heavily from ideas in
the survey paper by Karp [243].

Foiling an adversary. The classical adversary argument for a deterministic
algorithm establishes a lower bound on the running time of the algorithm by
constructing an input on which the algorithm fares poorly. The input thus
constructed may be different for each deterministic algorithm. A randomized
algorithm can be viewed as a probability distribution on a set of deterministic
algorithms. While the adversary may be able to construct an input that foils
one (or a small fraction) of the deterministic algorithms in the set, it is difficult
to devise a single input that is likely to defeat a randomly chosen algorithm.
While this paradigm underlies the success of any randomized algorithm, the
most direct examples appear in Chapter 2 (in game tree evaluation), Chapter 7
(in efficient proof verification), and Chapter 13 (in online algorithms).

Random sampling. The idea that a random sample from a population is
representative of the population as a whole is a pervasive theme in randomized
algorithms. Examples of this paradigm arise in almost all the chapters, most
notably in Chapters 3 (selection algorithms), 8 (data structures), 9 (geometric
algorithms), 10 (graph algorithms), and 11 (approximate counting).

Abundance of witnesses. Often, an algorithm is required to determine whether
an input (say, a number x) has a certain property (for example, “is x prime?”).
It does so by finding a witness that x has the property. For many problems,
the difficulty with doing this deterministically is that the witness lies in a search
space that is too large to be searched exhaustively. However, by establishing
that the space contains a large number of witnesses, it often suffices to choose
an element at random from the space. The randomly chosen item is likely to be
a witness; further, independent repetitions of the process reduce the probability
that a witness is not found on any of the repetitions. The most striking examples
of this phenomenon occur in number theory (Chapter 14).

Fingerprinting and hashing. A long string may be represented by a short
fingerprint using a random mapping. In some pattern-matching applications, it
can be shown that two strings are likely to be identical if their fingerprints are
identical; comparing the short fingerprints is considerably faster than comparing
the strings themselves (Chapter 7). This is also the idea behind hashing, whereby
a small set S of elements drawn from a large universe is mapped into a
smaller universe with a guarantee that distinct elements in S are likely to have
distinct images. This leads to efficient schemes for deciding membership in
S (Chapters 7 and 8) and has a variety of further applications in generating
pseudo-random numbers (for example, two-point sampling in Chapter 3 and
pairwise independence in Chapter 12) and complexity theory (for instance,
algebraic identities and efficient proof verification in Chapter 7).

Random re-ordering. A striking use of randomization in a number of problems
in data structuring and computational geometry involves randomly re-ordering
the input data, followed by the application of a relatively naive algorithm. After
the re-ordering step, the input is unlikely to be in one of the orderings that is
pathological for the naive algorithm. (Chapters 8 and 9).

xi



PREFACE

Load balancing. For problems involving choice between a number of re-
sources, such as communication links in a network of processors, randomization
can be used to “spread” the load evenly among the resources, as demonstrated
in Chapter 4. This is particularly useful in a parallel or distributed environment
where resource utilization decisions have to be made locally at a large number
of sites without reference to the global impact of these decisions.

Rapidly mixing Markov chains. For a variety of problems involving count-
ing the number of combinatorial objects with a given property, we have ap-
proximation algorithms based on randomly sampling an appropriately defined
population. Such sampling is often difficult because it may require computing
the size of the sample space, which is precisely the problem we would like to
solve via sampling. In some cases, the sampling can be achieved by defining a
Markov chain on the elements of the population and showing that a short ran-
dom walk using this Markov chain is likely to sample the population uniformly
(Chapter 11).

Isolation and symmetry breaking. In parallel computation, when solving a
problem with many feasible solutions it is important to ensure that the different
processors are working toward finding the same solution. This requires isolating
a specific solution out of the space of all feasible solutions without actually
knowing any single element of the solution space. A clever randomized strategy
achieves isolation, by implicitly choosing a random ordering on the feasible
solutions and then requiring the processors to focus on finding the solution of
lowest rank. In distributed computation, it is often necessary for a collection of
processors to break a deadlock and arrive at a consensus. Randomization is a
powerful tool in such deadlock-avoidance, as shown in Chapter 12.

Probabilistic methods and existence proofs. It is possible to establish that an
object with certain properties exists by arguing that a randomly chosen object
has the properties with positive probability. Such an argument gives no clue
as to how to find such an object. Sometimes, the method is used to guarantee
the existence of an algorithm for solving a problem; we thus know that the
algorithm exists, but have no idea what it looks like or how to construct it. This
raises the issue of non-uniformity in algorithms (Chapters 2 and 5).

Conventions

Most of the conventions we use are described where they first arise. One worth
mentioning here is the issue of integer breakage: as long as it does not materially
affect the algorithm or analysis being considered (and the intent is unambiguous
from the context), we omit ceilings and floors from numbers that strictly should
be integers. Thus, we might say “choose \/ﬁ elements from the set of size n”
even when n is not a perfect square. Our intent is to present the crux of the
algorithm/analysis without undue notational clutter from ceilings and floors.
The expression log x denotes log, x, and the expression In x denotes the natural
logarithm of x.

xii



PREFACE

Acknowledgements

This book would not have been possible without the guidance and tutelage of
Dick Karp. It was he who taught us this field and gave us invaluable guidance
at every stage of the book — from the initial planning to the feedback he gave
us from using a preliminary version of the manuscript in a graduate course at
Berkeley.

We thank the following colleagues, who carefully read portions of the
manuscript and pointed out many errors in early versions: Pankaj Agarwal,
Donald Aingworth, Susanne Albers, David Aldous, Noga Alon, Sanjeev Arora,
Julien Basch, Allan Borodin, Joan Boyar, Andrei Broder, Bernard Chazelle,
Ken Clarkson, Don Coppersmith, Cynthia Dwork, Michael Goldwasser, David
Gries, Kazuyoshi Hayase, Mary Inaba, Sandy Irani, David Karger, Anna Kar-
lin, Don Knuth, Tom Leighton, Mike Luby, Keju Ma, Karthik Mahadevan,
Colin McDiarmid, Ketan Mulmuley, Seffi Naor, Daniel Panario, Bill Pulley-
blank, Vijaya Ramachandran, Raimund Seidel, Tom Shiple, Alistair Sinclair,
Joel Spencer, Madhu Sudan, Hisao Tamaki, Martin Tompa, Gert Vegter, Jeff
Vitter, Peter Winkler, and David Zuckerman. We apologize in advance to any
colleagues whose names we have inadvertently omitted.

Special thanks go to Allan Borodin and the students of his CSC 2421 class
at the University of Toronto (Fall 1994), as well as to Gudmund Skovbjerg
Frandsen, Prabhakar Ragde, and Eli Upfal for giving us detailed feedback from
courses they taught using early versions of the manuscript. Their suggestions
and advice have been invaluable in making this book more suitable for the
classroom.

We thank Rao Kosaraju, Ron Rivest, Joel Spencer, Jeff Ullman, and Paul
Vitanyi for providing us with much help and advice on the process of writing
and improving the manuscript.

The first author is grateful to Stanford University for the environment and
resources which made this effort possible. Several colleagues in the Computer
Science Department provided invaluable advice and encouragement. Don Knuth
played the role of mentor and his faith in this project was a tremendous source
of encouragement. John Mitchell and Jeff Ullman were especially helpful with
the mechanics of the publication process. This book owes a great deal to the
students, teaching assistants, and other participants in the various offerings of
the course CS 365 (Randomized Algorithms) at Stanford. The feedback from
these people was invaluable in refining the lecture notes that formed a partial
basis for this book. Steven Phillips made a significant contribution as a teaching
assistant in CS 365 on two different occasions. Special thanks are due to Yossi
Azar, Amotz Bar-Noy, Bob Floyd, Seffi Naor, and Boris Pittel for their guest
lectures and help in preparing class notes. The following students transcribed
some lecture notes, and their class participation was vital to the development
of this material: Julien Basch, Trevor Bourget, Tom Chavez, Edith Cohen, Anil
Gangolli, Michael Goldwasser, Bert Hackney, Alan Hu, Jim Hwang, Vasilis
Kallistros, Anil Kamath, David Karger, Robert Kennedy, Sanjeev Khanna,

xiii



PREFACE

Daphne Koller, Andrew Kosoresow, Sherry Listgarten, Alan Morgan, Steve
Newman, Jeffrey Oldham, Steven Phillips, Tomasz Radzik, Ram Ramkumar,
Will Sawyer, Sunny Siu, Eric Torng, Theodora Varvarigou, Eric Veach, Alex
Wang, and Paul Zhang.

The research and book-writing efforts of the first author have been supported
by the following grants and awards: the Bergmann Award from the US-Israel
Binational Science Foundation; an IBM Faculty Development Award; gifts
from the Mitsubishi Corporation; NSF Grant CCR-9010517; the NSF Young
Investigator Award CCR-9357849, with matching funds from IBM Corpora-
tion, Schlumberger Foundation, Shell Foundation, and Xerox Corporation; and
various grants from the Office of Technology Licensing at Stanford University.

The second author is indebted to his colleagues at the Mathematical Sciences
Department of the IBM Thomas J. Watson Research Center, and to the IBM
Corporation for providing the facilities and environment that made it possible
to write this book. He also thanks Sandeep Bhatt for his encouragement and
support of a course on Randomized Algorithms taught by the author at Yale
University; the class notes from that course formed a partial basis for this book.

We are indebted to Lauren Cowles of Cambridge University Press for her
editorial help and advice in the preparation of the manuscript; this book has
emerged much improved as a result of her untiring efforts.

Rajeev Motwani thanks his wife Asha for her love, encouragement, and
cheerfulness; without her distractions this book would have been completed
several months earlier. This task would not have been possible without the
constant support and faith of his family over the years. Finally, the two mutts
Tipu and Noori deserve special mention for giving company during the many
late night editing sessions.

Prabhakar Raghavan thanks his wife Srilatha for her love and support, his
parents for their inspiration, and his children Megha and Manish for ensuring
that there was never a dull moment when writing this book.

World-Wide Web

Current information on this book may be found at the following address

on the World-Wide Web:
http://www.cup.org/Reviews&blurbs/RanAlg/RanAlg.html

This address may be used for ordering information, reporting errors and

viewing an edited list of errors found by other readers.

Xiv



Contents

Preface

I
1

Tools and Techniques

Introduction

1.1
1.2
1.3
14
1.5

A Min-Cut Algorithm

Las Vegas and Monte Carlo

Binary Planar Partitions

A Probabilistic Recurrence

Computation Model and Complexity Classes

Notes
Problems

Game-Theoretic Techniques

2.1
22
23

Game Tree Evaluation
The Minimax Principle
Randomness and Non-uniformity

Notes
Problems

Moments and Deviations

3.1 Occupancy Problems

3.2 The Markov and Chebyshev Inequalities
3.3 Randomized Selection

34 Two-Point Sampling

3.5 The Stable Marriage Problem

3.6 The Coupon Collector’s Problem

Notes

Problems

Tail Inequalities

4.1

The Chernoff Bound

X

O N W =

10

16
23
25

28

28
31
38
40
41

43

43
45
47
51
53
57
63
64

67
67



II

CONTENTS

4.2 Routing in a Parallel Computer
4.3 A Wiring Problem

44 Martingales

Notes

Problems

The Probabilistic Method

5.1 Overview of the Method

5.2 Maximum Satisfiability

5.3 Expanding Graphs

5.4 Oblivious Routing Revisited

5.5 The Lovasz Local Lemma

5.6 The Method of Conditional Probabilities
Notes

Problems

Markov Chains and Random Walks

6.1 A 2-SAT Example

6.2 Markov Chains

6.3 Random Walks on Graphs

6.4 Electrical Networks

6.5 Cover Times

6.6 Graph Connectivity

6.7 Expanders and Rapidly Mixing Random Walks

6.8 Probability Amplification by Random Walks on Expanders
Notes

Problems

Algebraic Techniques

7.1 Fingerprinting and Freivalds’ Technique

7.2 Verifying Polynomial Identities

7.3 Perfect Matchings in Graphs

7.4 Verifying Equality of Strings

7.5 A Comparison of Fingerprinting Techniques
7.6 Pattern Matching

7.7 Interactive Proof Systems

7.8 PCP and Efficient Proof Verification

Notes

Problems

Applications
Data Structures
8.1 The Fundamental Data-structuring Problem

vi

74
79
83
96
97

101

101
104
108
112
115
120
122
124

127

128
129
132
135
137
139
143
£51
155
156

161

162
163
167
168
169
170
172
180
186
188

195
197
197



CONTENTS

8.2 Random Treaps

8.3 Skip Lists

84 Hash Tables

8.5 Hashing with O(1) Search Time
Notes

Problems

Geometric Algorithms and Linear Programming

9.1 Randomized Incremental Construction
9.2 Convex Hulls in the Plane
9.3 Duality

94 Half-space Intersections

9.5 Delaunay Triangulations

9.6 Trapezoidal Decompositions
9.7 Binary Space Partitions

9.8 The Diameter of a Point Set
9.9 Random Sampling

9.10 Linear Programming

Notes

Problems

10 Graph Algorithms

11

10.1 All-pairs Shortest Paths
10.2 The Min-Cut Problem
10.3 Minimum Spanning Trees
Notes

Problems

Approximate Counting

11.1 Randomized Approximation Schemes
11.2 The DNF Counting Problem

11.3 Approximating the Permanent

11.4 Volume Estimation

Notes

Problems

12 Parallel and Distributed Algorithms

12.1 The PRAM Model

12.2 Sorting on a PRAM

12.3 Maximal Independent Sets

12.4 Perfect Matchings

12.5 The Choice Coordination Problem
12.6 Byzantine Agreement

Notes

Problems

vii

201
209
213
221
228
229

234

234
236
239
241
245
248
252
256
258
262
273
275

278

278
289
296
302
304

306

308
310
315
329
331
333

335

335
337
341
347
355
358
361
363



CONTENTS

13 Online Algorithms

13.1 The Online Paging Problem

13.2 Adversary Models

13.3 Paging against an Oblivious Adversary
13.4 Relating the Adversaries

13.5 The Adaptive Online Adversary

13.6 The k-Server Problem

Notes

Problems

14 Number Theory and Algebra

14.1 Preliminaries

14.2 Groups and Fields

14.3 Quadratic Residues

144 The RSA Cryptosystem

14.5 Polynomial Roots and Factors
14.6 Primality Testing

Notes

Problems

Appendix A Notational Index
Appendix B Mathematical Background
Appendix C Basic Probability Theory

References
Index

viii

368

369
372
374
377
381
384
387
389

392

392
395
402
410
412
417
426
427

429
433
438

447
467



PART ONE
Tools and Techniques



I oIiEE, 75 B 5E BEPDFIE 17 7] : www. ertongbook. com



