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Preface

This text stéms from a graduate course I introduced at Cornell a number of years
ago. Since its inception in the mid-1960s, the field has expanded, predominantly
in the directions of quantum ‘and relativistic kinetic theory. Quantum Kinetic
theory is important to problems in the transport of particles, as well as radiation
through material media, which finds application in solid-state and laser physics.
Relativistic kinetic theory has grown important in certain plasma problems
related to controlled thermonuclear fusion. It is also relevant to many problems
in astrophysics. Classical kinetic theory is the foundation of fluid dynamics and
thus is important to aerospace, mechanical, and chemical engineering.

The text is comprised of six chapters. In Chapter 1, the transformation
theory of classical mechanics is developed for the purpose of deriving Liouville’s
theorem and the Liouville equation. Four distinct interpretations of the solution
to this equation are presented. The fourth interpretation addresses Gibbs’s notion
of a distribution function that is the connecting link between the Liouville
equation and experimental observation. The notion of a Markov process is
discussed, and the central-limit theorem is derived and applied to the random-
walk problem. ‘

In Chapter 2, the very significant BBKGY hierarchy is obtained from the
Liouville equation, and the first two equations of this sequence are applied in the
derivation of conservation of energy for a gas of interacting particles. In
nondimensionalizing this sequence, parameters emerge that differentiate between
weakly and strongly coupled fluids. Correlation functions are introduced through
the Mayer expansions. Examining a weakly coupled fluid comprised of particles
interacting under long-range interaction leads to the Vlasov equation and the
closely allied concept of a self-consistent solution. Prigogine’s diagrammatic
technique and related operator formalism for examining the Liouville equation
are described. The Bogoliubov ansatz concerning the equilibration of a gas, as
well as the Klimontovich formulation of kinetic theory, is also included in this
chapter.

The Boltzmann equation is derived in Chapter 3 and applied to the
derivation of fluid dynamic equations and the H theorem. Poincaré’s recurrence
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theorem is proved and is discussed relative to Boltzmann’s H theorem. Transport
coefficients are defined, and the Chapman-Enskog expansion is developed.
Results of this technique of solution to the Boltzmann equation are compared
with experimental data and are found to be in good agreement for various
molecular samples. Grad’s method of solution of the Boltzmann equation
involving expansion in tensor hermite polynomials is described. The chapter
continues with a derivation of the Druyvesteyn distribution relevant to a
current-carrying plasma in a dc electric field. In the last section of the chapter, the
topic of irreversibility is returned to. Ergodic and mixing flows are discussed.
Action-angle variables are introduced, and the notions of classical degeneracy
and resonant domains in phase space are described in relation to the chaotic
behavior of classical systems. A statement of the closely allied KAM theorem is
also given.

In the first half of Chapter 4, the Vlasov equation is applied to linear wave
theory for a two-component plasma comprised of electrons and heavy ions.
Landau damping and the Nyquist -criterion for wave instabilities are described.
The chapter continues with derivations of other important kinetic equations:
Krook-Bhatnager—Gross (KBG), Fokker—Planck, Landau, and Balescu—~Lenard
equations. A table is included describing the interrelation of the ciassical kinetic
equations discussed ia the text. The chapter concludes with a description of the
widely used Monte Cario numerical analysis ip kinetic theory.

Quantum kinetic theory is developed in Chapter 5. A brief review of basic
principles leads to a description of the density matrix, the Pauli equation, and the
closely allied Wigner distribution. Various equivalent forms of the Wigner—Moyal
equation are derived. A quantum modified KBG equation is appiied to. photon
transport and electron propagation in solids. Thomas—Fermi screening and the
‘Mott transition are also discussed. The Uehling-Uh! :nbeck quantum modified
Boitzmann equation is developed and applied to a rfermi liquid. The chapter
continues with ‘an overview of classical and quantum hierarchies of equations
connecting reduced distributions. A table of hierarchies is included where the
reader is easily able to view distinctions between these sets of equations. The
Kubo formula, déscribed previously in Chapter 3, is revisited and applied to the
derivation of a quantum expression for electrical conductivity. The chapter
concludes with an introduction to Green’s function analysis and related diagram-
_ matic representations.

The last chapter of the text addresses relativistic kmenc theory. The
(.mus:,:on begms with elementary ‘concepts, including a statement of Hamilton's

xLumons in covariant form. Stemming from a covariant distribution function in
il's equations in covariant form, a relativistic

.\’

Viasov equation is derived for a plasma in an electroma gne tic field. A'\ important
ment of this chapter is the derivation and compitaiion of a table of Lorentz
ariants in kinetic ibeory. The chapler continevs ~ith a derivation of the

' . s
By ey

cowiel nipten of relativity in

Lwdtaba tavtan .»1« 2% ..‘4. W
non-Cartesian coordmates o
Each chapter is precedéd by a brief introductory statement of the subject

matter contained in the chapter. Problems appear at the end. of each chapter,
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many of which include scolutions. Some such problems address self-contained
descriptions of closely allied topics. In such cases, these problems are listed in the
chapter table of contents under the heading Topical Problems. In addition to
references cited in the text, a comprehensive list of references is included in
Appendix D. Assorted mathematical formulas are included in Appendixes A and
B. Reference to equations is as follows: Consider, for example, reference to (3.4)
in Chapter 5. In this event the first numeral in (3.4) indicates that the equation is
in Section 5.3. If mentioned in, say, Chapter 6, this same equation is referred to
as (5.3.4). Reference to equations in problems is written, for example, as (P3.7).
This is equation 7 in problem 3 in a given chapter. Reference to equations in an
appendix is written, for example, (B.3), which is equation 3 in Appendix B. A list
of symbols precedes the appendixes.

Stemuiing from the observation that science and society are inextricably
entwined, a time chart is included (Appendix E) listing early contributors to
science and technology of the classical Greek and Roman eras. The reader will
note that a central figure in this display is the Greek philosopher, Democritus,
who, at about 400 BCE, was the first to propose an atomic theory of matter.
Readers of my earlier work [Introduction to the Theory of Kinetic Equations,
Wiley, New York (1969)] will recall that it, too, included a time chart describing
contributions to dynan.ics from the fifteenth to the nineteenth centuries.

We trust that this text will afford students and working scientists a firm
foundation from which they may continue to more advanced topics in the field.

Deep appreciation is expressed to Kenneth Tennity for his support and
confidence in this work. I am indebted to Catherine Kuhl for her diligence and
care taken in the typing of the manuscript for this book.

Many others have contributed to the development of this work. I remain
indebted to these kind individuals and would like here to express my sincere
gratitude for their encouragement, support, and constructive criticism: Sidney
Leibovich, Terrence Fine, Christof Litwin, Kenneth Gardner, Neal Maresca, K.
C. Liu, Danny Heffernan, Edwin Dorchek, Philip Bagwell, Ronald Klein, Steve
Seidman, S. Ramakrishna, G. George, William Morrell, Wayne Scales, Daniel
Koury, Erich Kunhardt, Marvin Silver, James Hartle, Abner Shimony, Philip
Holmes, Lloyd Hillman, Arthur Ruoff, L. Pearce Williams, Lloyd Motz, John
Guckenheimer, Isaac Rabinowitz, and Ilya Prigogine.

I am particularly indebted to my former student, Gregory K. Schenter, for
his careful reading of the manuscript for this text, his valuable criticism, and other
important contributions to the overall work. It is due to my association with Greg
as with other equally gifted graduate students that the talmudic inscription for this
work is motivated.

Peace,
R. L. L.
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