CARDIOLOGY UPDATE Reviews for Physicians 1990 Edition

005 37601

CARDIOLOGY UPDATE Reviews for Physicians

1990 Edition

Elliot Rapaport, MD

Editor-in-Chief

Professor of Medicine University of California, San Francisco, School of Medicine Chief, Cardiology Service San Francisco General Hospital San Francisco

ELSEVIER
New York • A

Amsterdam · London

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence, or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. No suggested test of procedure should be carried out unless, in the reader's judgment, its risk is justified. Because of rapid advances in the medical sciences, we recommend that the independent verification of diagnoses and drug dosages should be made. Discussions, views, and recommendations as to medical procedures, choice of drugs, and drug dosages are the responsibility of the authors.

Elsevier Science Publishing Co., Inc. 655 Avenue of the Americas, New York, New York 10010

Sole distributors outside the United States and Canada:

Elsevier Science Publishers B.V. P.O. Box 211, 1000 AE Amsterdam, the Netherlands

© 1990 by Elsevier Science Publishing Co., Inc.

This book has been registered with the Copyright Clearance Center, Inc. For further information please contact the Copyright Clearance Center, Inc., Salem, Massachusetts.

This book is printed on acid-free paper.

The Library of Congress has cataloged this serial title as follows:

Cardiology update. 1979-

New York, Elsevier.

v. ill. 24 cm.

Annual.

"Reviews for physicians."

ISSN 0163-1675 = Cardiology apdate.

1. Heart—Diseases —Periodicals. 2. Cardiology—Periodicals

[DNLM: W1 CA77KE]

RC681.A1C255 616.1'2'005

79-643159 MARC-S

Library of Congress

78[8507]

Current printing (last digit): 10 9 8 7 6 5 4 3 2 1

Manufactured in the United States of America

PREFACE

Cardiology Update, 1990 Edition continues a series dedicated to current topics of clinical importance in cardiology. These chapters cover a broad spectrum of timely topics that impact upon the important day-today problems that the practicing internist and cardiologist face. Appropriate to the titles of these volumes, it is our purpose to update important areas of cardiology and to ensure that the latest information in the field is presented. Among the newer developments discussed in the area of interventional cardiology are the current status of aortic balloon valvuloplasty in the adult patient, the roles of coronary artery bypass surgery and angioplasty in patients with multivessel coronary disease, and the problems facing the surgeon following unsuccessful angioplasty. In addition, one of our chapters is devoted to cardiac angioscopy and how it has helped our understanding of coronary and peripheral vascular disease. Thrombolysis is an area that has exploded on the cardiology scene in recent years, and in this volume there is a discussion of the newer thrombolytic agents. Complex ventricular arrhythmias following recovery from myocardial infarction portend decreased likelihood of survival; however, suppression of these ventricular arrhythmias with antiarrhythmic drugs has been singularly unsuccessful. The startling results of the newest of these trials, the Cardiac Arrhythmia Supression Trial (CAST), is reviewed. The intriguing issue of silent myocardial is-

PREFACE

chemia is also reviewed in this volume by one of the pioneers in this field. Finally, the last three chapters address three separate topics of interest; they are the diagnosis and management of syncope, calcium nutrition and metabolism as it relates to blood pressure control, and the receptor-G protein-adenylate cyclase complex in heart failure.

The Editorial Board and I are indebted to the outstanding authorities in the field who have contributed to this volume. I trust that the readers, whether clinicians or academicians, will be stimulated by the

interesting, diverse subjects in this volume.

CONTRIBUTORS

J. THOMAS BIGGER, IR., MD

Director, The Arrhythmia Control Unit, Columbia Presbyterian Medical Center; Professor of Medicine and Pharmacology, Department of Medicine; College of Physicians and Surgeons of Columbia University, New York, New York

LAWRENCE H. COHN, MD

Chief, Division of Cardiac Surgery, Brigham and Women's Hospital; Professor of Surgery, Harvard Medical School, Boston, Massachusetts

ARTHUR M. FELDMAN, MD, PhD

Assistant Professor, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland

JAMES S. FORRESTER, MD

Professor of Medicine, University of California Los Angeles School of Medicine; Director, Cardiovascular Research, George Burns and Gracie Allen Professor of Medicine, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California

FETNAT M. FOUAD-TARAZI, MD

Head, Cardiac Function Laboratory, Department of Heart and Hypertension Research, Cleveland Clinic Foundation, Cleveland, Ohio

xii CONTRIBUTORS

WARREN GRUNDFEST, MD

Director of Surgery and Director, Laser Surgery and Surgical Research, Department of Surgery, Cedars-Sinai Medical Center; Assistant Clinical Professor of Surgery, University of California Los Angeles School of Medicine, Los Angeles, California

DANIEL C. HATTON, PhD

Institute for Nutrition and Cardiovascular Research; Associate Professor, Department of Medicine, Division of Nephrology and Hypertension, Oregon Health Sciences University, Portland, Oregon

ANN HICKEY, MD

Attending Cardiologist, Department of Medicine, Division of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California

MARK S. HOCHBERG, MD

Attending Cardiothoracic Surgeon, Department of Thoracic and Cardiovascular Surgery, Newark Beth Israel Medical Center; Associate Professor of Surgery, University of Medicine and Dentistry of New Jersey, Newark, New Jersey

FREDERICK J. JAEGER, DO

Cardiovascular Research Center, Department of Heart and Hypertension Research, Cleveland Clinic Foundation, Cleveland, Ohio

NIERI KARANJA, PhD

Assistant Professor of Medicine (Research), Oregon Health Sciences University, Portland, Oregon

FRANK LITVACK, MD

Co-director Cardiac Catheterization Laboratory; Assistant Professor of Medicine, Department of Cardiology, University of California Los Angeles School of Medicine, Los Angeles, California

IAMES D. MALONEY, MD

Director, Electrophysiology Laboratory, Department of Cardiology, Cleveland Clinic Foundation, Cleveland, Ohio

DAVID A. MCCARRON, MD

Director, Institute for Nutrition and Cardiovascular Research; Professor of Medicine, Department of Medicine, Co-Head, Division of Nephrology and Hypertension, Oregon Health Sciences University, Portland, Oregon

CHARLES R. MCKAY, MD

Associate Professor, Department of Medicine, Division of Cardiovascular Diseases, University of Iowa School of Medicine, Iowa City, Iowa

CYNTHIA D. MORRIS, MPH, PhD

Assistant Professor of Medicine, Department of Medicine, Divisions of Nephrology and Hypertension and Cardiology, Oregon Health Sciences University, Portland, Oregon

ANDREW P. SELWYN, MD

Director of Cardiac Catheterization, Associate Professor of Medicine, Department of Medicine, Cardiovascular Division, Harvard Medical School, Boston, Massachusetts

MARC VERSTRAETE, MD, PhD

Director, Center for Thrombosis and Vascular Research; Professor of Medicine, University of Leuven, Leuven, Belgium

ALAN C. YEUNG, MD

Clinical and Research Fellow in Cardiology, Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts

ERIC W. YOUNG, MD

Assistant Professor of Medicine, Oregon Health Sciences University, Portland, Oregon

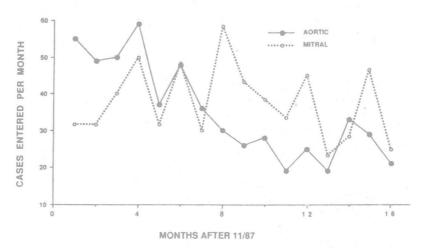
CONTENTS

Preface		ix
Contributors		χi
CURRENT STATUS OF AORTIC BALLOON VALVULOPLASTY TREATMENT OF ADULT PATIENTS: RESOLVED ISSUES,		
CONTROVERSIAL ISSUES, FUTURE DIRECTIONS		1
Charles R. McKay, MD		
Resolved Issues Controversial Issues		2 10
Future Directions		.14
THE ROLE OF CORONARY BYPASS SURGERY VERSUS PERCUTANEOUS TRANSLUMINAL CORONARY ANGIOPLASTY		
IN PATIENTS WITH MULTIVESSEL CORONARY DISEASE: VIEWPOINT OF THE CARDIAC SURGEON		19
Lawrence H. Cohn, MD		
PTCA Versus CABG for Single-Vessel Disease Techniques and Results of Multiple-Vessel CABG		20
CABG Versus PTCA for Multiple-Vessel Disease		22
Data Retrieval and the Definition of Successful Coronary Angioplasty Cost-Effectiveness: CABG Versus PTCA		24 24
Unresolved Issues		25

EMERGENCY SURGERY FOLLOWING UNSUCCESSFUL	
PERCUTANEOUS TRANSLUMINAL CORONARY ANGIOPLASTY	29
Mark S. Hochberg, MD	
Patient Selection	30
Surgical Backup	33
Anatomy/Physiology of Coronary Artery Injury	34
Determining When Angioplasty has Failed	36
Strategy in the Catheterization Laboratory	39
Anesthesia for the Acutely Ischemic Patient	41
Strategy in the Operating Room	42
Surgical Results of Emergency CABG for Failed Angioplasty	45
Conclusion	48
ANGIOSCOPY: ITS ROLE IN UNDERSTANDING CORONARY AND PERIPHERAL VASCULAR DISEASE	53
James S. Forrester, MD, Ann Hickey, MD, Frank Litvack, MD, and	
Warren Grundfest, MD	
The Angioscope and the Procedure	53
Peripheral Vascular Angioscopy	54
A Paradigm for Coronary Disease	54
Conclusion	65
SILENT MYOCARDIAL ISCHEMIA	67
Alan C. Yeung, MD, and Andrew P. Selwyn, MD	
Historical Perspective	67
Pathophysiology of Silent Myocardial Ischemia	68
Detection and Diagnosis of Silent Myocardial Ischemia	72
Characteristics of Ischemia During Daily Life	80
Effects on Prognosis	87
Treatment	90
Conclusion	91
Constant	
NICHED THOMPOLYTIC ACENTÉ	99
NEWER THROMBOLYTIC AGENTS	99
Marc Verstraete, MD	
The Fibrinolytic System in Brief	100
Plasminogen Activators	100
WILL SUPPRESSING VENTRICULAR ARRHYTHMIAS AFTER	
MYOCARDIAL INFARCTION IMPROVE SURVIVAL? WHAT WILL	
WE LEARN FROM THE CARDIAC ARRHYTHMIA SUPPRESSION	
TRIAL?	113
J. Thomas Bigger, Jr., MD	117
Rationale for Antiarrhythmic Drug Treatment	113
Previous Clinical Trials	114 114
The Cardiac Arrhythmia Pilot Study (CAPS)	123
The Cardiac Arrhythmia Suppression Trial (CAST)	123

CONTENTS		vii
NEWER ASPECTS IN DIAGNOSIS AND MANAGEMENT OF		141
SYNCOPE Frederick J. Jaeger, DO, James D. Maloney, MD, and Fetnat M. Fouad-Tarazi, MD		141
Definition and Mechanisms of Syncope Clinical Presentation of Syncope Specific Diagnostic Tests for the Syncope Patient Specific Disorders Causing Syncope Conclusion		141 142 148 162 169
CALCIUM NUTRITION AND METABOLISM AND BLOOD PRESSURE CONTROL		175
Cynthia D. Morris, PhD, Daniel C. Hatton, PhD, Eric W. Young, MD, Njeri Karanga, PhD, and David A. McCarron, MD		
Epidemiology Disturbances of Ca ²⁺ Metabolism in Animal Models of Hypertension Blood Pressure Changes to Variations of Dietary Calcium in Experimental Hypertension Human Blood Pressure Response to Increased Calcium Intake Predictors of a Blood Pressure Response in Humans Mechanisms of Dietary Calcium's Antihypertensive Action Areas of Potential Clinical Application Summary		176 180 191 192 194 195 198 199
THE RECEPTOR-G PROTEIN-ADENYLATE CYCLASE COMPLEX IN HEART FAILURE		213
Arthur M. Feldman, MD, PhD The Receptor-G Protein-Adenylate Cyclase Complex Abnormalities in the Receptor-G Protein-Adenylate Cyclase Complex is	in	215
the Failing Human Heart Clinical Implications of Alterations in the RGC Pathway Conclusion		219 223 225
Index		235

CURRENT STATUS OF AORTIC BALLOON VALVULOPLASTY TREATMENT OF ADULT PATIENTS

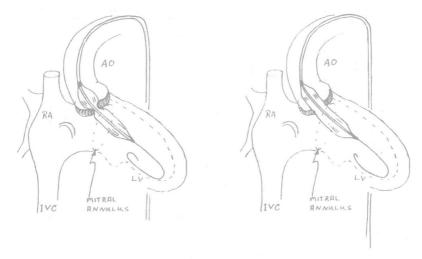

RESOLVED ISSUES, CONTROVERSIAL ISSUES, FUTURE DIRECTIONS

Charles R. McKay, MD

Over the last four years, considerable experience has been acquired regarding the performance and results of aortic balloon valvuloplasty. Published reports from many investigators have resolved certain issues regarding the safety, efficacy, and preferred methods of performing the technique. In addition, controversial issues regarding aortic valvuloplasty are being resolved by recent clinical studies and registry reports. With these experiences it is now possible to look to future directions in technical improvements, in clinical applications, and follow-up results of aortic balloon valvuloplasty. We are developing a clearer understanding of the clinical role and utility of the technique in patient care. This review will discuss those issues regarding aortic valvuloplasty that are resolved based on current data, then those that remain controversial; suggest future directions for clinical investigation; and discuss the possible role of aortic balloon valvuloplasty in patient care.

The practice of aortic balloon valvuloplasty has undergone an extraordinary evolution over its short 4-year history. It was first applied in adult patients by Cribier and Letac in 1985. The immediate hemodynamic improvements were associated with dramatic symptomatic improvements in their elderly and very ill patients. These encouraging early results were quickly confirmed by other groups²⁻⁴ and led to enthusiastic editorial responses. ^{5,6} The practice of aortic balloon valvulo-

MONTHLY CASE ENTRY 11/87 TO 2/89


FIGURE 1. Monthly case entry into the NHLBI Balloon Valvuloplasty Registry. Although mitral case entry is relatively stable, the aortic case entry rate shows a steady decline over the first 16 months of the registry.

plasty quickly proliferated through many academic and community hospital centers, despite its status as an investigational technique. Recently, follow-up results⁷⁻⁹ have demonstrated significant mortality and a high incidence of recurrent symptoms have led to a more restricted use of the technique in some centers. As an illustration, the case acquisition rates for the NHLBI Balloon Valvuloplasty Registry are shown in Figure 1. The addition of new mitral cases to the registry show that there is an erratic but persistent acquisition rate of new cases. In contrast, the acquisition rate of new aortic cases shows a steady decline over the initial 16-month registry period despite a potentially larger appropriate patient population. Although further studies will be needed to clarify the usefulness of this technique, certain issues regarding aortic valvuloplasty have been resolved.

RESOLVED ISSUES

Resolved issues include the standard technique and possible variations in the technique for performing the procedure, the immediate hemodynamic results, and the associated procedure-related risks. In addition, data regarding the mechanisms of dilatation and restenosis and clinical results at midterm follow-up have now been published.

The optimum technique used to perform aortic balloon valvuloplasty has evolved from that originally reported by Cribier (Figure 2).

FIGURE 2. Retrograde technique of aortic balloon valvuloplasty. Line drawing in RAO position shows a single balloon catheter across the stenotic aortic valve. The distal catheter tip is in the left ventricle and is maintained in place over a long J-exchange guidewire.

A catheter is placed retrograde from a femoral artery over a guidewire across the stenotic aortic valve with the distal end of the balloon in the left ventricle. Careful positioning of the catheter across the aortic valve is followed by full inflation and rapid deflation of the balloon. The most commonly used balloon is 20 mm in diameter and 5.5 cm long. The inflation times vary from 10 to 60 seconds, as determined by a patient's hemodynamic response. Table 1 summarizes the immediate hemodynamic results from several groups. Analysis of these data demonstrate

TABLE 1. Immediate Results of Aortic Balloon Valvuloplasty

Lead author	No. of	Mean		dient (mm Hg)		valve (cm²)	
(Ref. no.)	patients	(yr)	Pre	Post	Pre	Post	Comments
Cribier (10)	92	75	75	30	0.5	0.9	15- to 20-mm balloon
McKay (11)	32	79	77	39	0.6	0.9	
Block (12)	25	79	63	35	0.4	0.7	Retrograde cases
Schneider (13)	14	77	55	37	0.6	0.8	
Isner (14)	16	74	56	42	0.5	0.6	Single-balloon cases
McKay (15)	22	67	56	33	0.6	0.9	Single-balloon cases
Brady (16)	26	86	59	31	0.5	0.7	All patients >80 yr

Abbreviations: AO-LV = mean transaortic valve gradient aorta to left ventricle; AO valve area = aortic valve area by the Gorlin formula.

ABLE 2. Immediate Major Risks of Aortic Balloon Valvuloplasty

Lead author	N6		CVA	Perforation	cor	cular npli- ions	
(Ref. no.)	No. of patients	Death	CVA or emboli	and tamponade	Total	To OR	Other
Cribier (10)	92	3	0		3	1	2 AR increased
McKay (11)	32	3	Ó	1	and the		EF ↑ 0.40 to 0.46
Block (12)	25	1	3	0	6	0	One transfusion
Schneider (13)	14	0	0	0	2	0	Two transfusions
Isner (14)	16	1	0	1	2	1	_
McKay (15)	22	1	0	0	3	2	Two transfusions
Brady (16)	26	3	1	0	3	2	Four AV block, one AR

Abbreviations: Death = in-hospital mortality; CVA = cerebrovascular accident; perforation = left ventricular guidewire or catheter perforation; to OR = number requiring surgical correction; AR = new increased aortic regurgitation; EF = left ventricular ejection fraction; AV = aortic valve.

that aortic valvuloplasty results in an immediate 25% to 60% decrease in the transaortic valve gradient and average increases in aortic valve areas of 0.1 to 0.4 cm². Some reports also demonstrated decreases in left ventricular diastolic pressure, with minimal changes in the cardiac output and improvement in symptomatic clinical status in most patients. In these reports the increase in aortic valve area is usually 0.2 to 0.4 cm² and only occasionally (15% to 37% of cases) is the final area increased to greater than 1 cm². The major risks of balloon valvuloplasty reported by these groups (Table 2) include a 3% to 12% in-hospital mortality rate, cardiac perforation with tamponade, systemic embolization, and damage to the aortic cusps or annulus. In addition, there was approximately a 10% incidence of vascular trauma, about half requiring operative correction. Although early in the use of valvuloplasty, transfusion was common, recently it is rare to transfuse these patients. There were also small associated risks of arrhythmias, aortic valve block, and bacteremia.

These reports are consistent in demonstrating the ability of aortic balloon valvuloplasty to acutely decrease the aortic valve gradient and improve the aortic valve function. Midterm follow-up of larger groups of patients (Table 3) has demonstrated a 3% to 9% 30-day mortality, an incidence of recurrent symptoms from 13% to 57%, hemodynamic deterioration even without increased symptoms in over half of the patients, and a 6- to 12-month mortality rate of 5% to 42%. In some reports these adverse events are collectively viewed as *clinical restenosis*, because few of these elderly patients actually have repeat catheterization. More important, however, are the consistent findings in subsets of patients of increased aortic valve gradients in both asymptomatic and symptomatic patients, reevaluated by doppler or catheterization. 7,8,18,22 To put these results in perspective, it should be noted that young symptomatic patients with critical aortic stenosis face an 8% annual mortality²⁵ and el-

derly patients face a 45% to 57% 12-month mortality without surgery. ^{26,27} With surgery they may face up to 29% early mortality and 20% late mortality. ²⁸ Recent reports have nevertheless advanced more pessimistic views of the potential of aortic balloon valvuloplasty to achieve persistent improvement in aortic valve function in unselected patients and have concentrated on identifying clinical predictors of restenosis. As might be expected, recurrent symptoms and poor survival are more commonly seen in patients with associated systemic diseases, poor left ventricular function, ²⁴ diffuse coronary artery disease, and aortic valve

areas after dilatation of only 0.7 cm² or less.²³

Complementary careful morphologic studies of stenotic aortic valves at autopsy and at the time of aortic valve replacement offer explanations for these immediate and midterm follow-up results (Table 4). Early studies^{2,4} emphasized splitting and fracturing of calcific nodules and stretching of valve cusps as mechanisms for improving aortic valve function. In these studies, the false commissures of bicuspid or unicuspid valves were not split, but the fused commissures in the few rheumatic valves studied were split and resulted in improved aortic cusp mobility. These results were confirmed by Waller et al, 29 who studied the mechanism of aortic valve stenosis in autopsy specimens using videotaped records of the valves and valvuloplasty balloon dilatation procedures. With this technique, the stresses and stretching mechanisms could be directly observed as the balloon inflated across the valve and could be reanalyzed on videotape in light of the resultant morphologic changes produced by the valvuloplasty procedure. Obvious fractures of large calcific nodules, small fractures in calcified cusps, and splitting of fused commissures were observed (Figure 3). In many of the valves, fusion of these commissures was not a prominent morphologic mechanism causing aortic valve stenosis.

Review of videotaped records during balloon expansion showed that as the balloon expanded, the calcific nodules were displaced, and directly stretched and distorted the aortic cusps and aortic wall. These studies showed that a primary mechanism of improved valve mobility in the nonrheumatic valves was stretching of the aortic valve cusps and annulus. ²⁹ Furthermore, observing these specimens immediately after valvuloplasty demonstrated that the elastic tissues soon returned to their original shape and size unless there was dehiscence and damage to the aortic wall tissues. Therefore, we have postulated that a significant amount of restenosis after aortic valvuloplasty occurs shortly after the

procedure and is due to elastic recoil of the aortic wall.

Further study of over 50 such specimens has confirmed these findings and has shown that the etiology of the stenosis is a major determinant of the mechanism by which valvuloplasty relieves stenosis and the mechanism of restenosis.³⁰ In rheumatic valves where commissural fusion is a prominent mechanism of aortic orifice restriction, splitting of the commissures results in improved cusp mobility. However, where commissural fusion is not present, namely, in senile calcific aortic stenosis and in middle-aged and elderly patients with calcified bicuspid aortic valves, fracture of nodules and expansion of the aortic wall are

TABLE 3. Follow-Up After Aortic Balloon Valvuloplasty

FIU Hg) AVA (cm²) acusiy with recurrent No. patients Repeat dead at (mo) Pre Post F/U Fre Post F/U (% of total) symptoms (%) with AVR BV end of F/U and of		Totalno		A	AVG (mm	ımı				20 %	No motion to				
patients* (mo) Pre Post F/U Pre Post F/U (% of total) symptoms (%) with AVR BV end of F/U 204 12 71 21 — 0.5 1.0 — 19(9) 61(30) — — 40(20) 2 42 10 70 37 38 0.5 0.8 0.5 3(7) 16(38) 3 1 4(10) 4 4(10) 4 5 5 6 48 33 46 0.5 0.9 0.7 3(5) 9 4 8(5) 7 7 26 6 59 31 — 0.5 0.7 — 2(8) 2(8) 1 5(19) 4 4 6 6 — 0.7 1.0 0.7 — 25(57) — — 5	Lead author	of of	E/U		Hg)		AI	'A. (c)	m ²)	su-day mortality	with recurrent	No. patients	Reneat	No. patients	
204 12 71 21 — 0.5 1.0 — 19(9) 61(30) — — 40(20) 2 42 10 70 37 38 0.5 0.8 0.5 3(7) 16(38) 3 1 4(10) A 55 6 48 33 46 0.5 0.9 0.7 3(5) 9 4 8(5) 7 26 6 59 31 — 0.5 0.7 — 2(8) 2(8) 1 5(19) A 44 6 — — 0.7 1.0 0.7 — 25(57) — 8	(Ref. no.)	patients*			Post		Pre	Post		(% of total)		with AVR	BV	end of F/U	Comments
42 10 70 37 38 0.5 0.8 0.5 3(7) 16(38) 3 1 4(10) A 55 6 48 33 46 0.5 0.9 0.7 3(5) 9 4 8(5) 7 26 6 59 31 0.5 0.7 2(8) 2(8) 1 5(19) A 44 6 0.7 1.0 0.7 25(57) S	Cribier (17)	204	12	71	21	1	0.5	1.0	1	19(9)	61(30)	manus.		40(20)	24% restenosis
55 6 48 33 46 0.5 0.9 0.7 3(5) 9 4 8(5) 7 26 6 59 31 - 0.5 0.7 - 2(8) 2(8) 1 5(19) 4 44 6 0.7 1.0 0.7 - 25(57) - 5	Desnovers (7)	- 42	10	70	37		0.5	0.8	0.5	3(7)	16(38)	ro	-	4(10)	at cath.
55 6 48 33 46 0.5 0.9 0.7 3(5) 9 4 8(5) 7 26 6 59 31 - 0.5 0.7 - 2(8) 2(8) 1 44 6 0.7 1.0 0.7 - 25(57) - 5 55 6 48 33 46 0.5 0.0 0.7 3(5) 9 4 8(5) 7 56 19) 4														(0.2)	patients on
26 6 48 33 46 0.5 0.9 0.7 3(5) 9 4 8(5) 7 26 6 59 31 - 0.5 0.7 - 2(8) 2(8) 1 5(19) A 44 6 0.7 1.0 0.7 - 25(57) 5															echo
26 6 59 31 — 0.5 0.7 — 2(8) 2(8) 1 5(19) A 44 6 — 0.7 1.0 0.7 — 25(57) — 8	Nishimura (8)	. 55	9	48	33	46	0.5	6.0	0.7	3(5)		6	4	8(5)	78% of
26 6 59 31 — 0.5 0.7 — 2(8) 2(8) 1 5(19) A 44 6 — 0.7 1.0 0.7 — 25(57) — 8															patients
26 6 59 31 — 0.5 0.7 — 2(8) 2(8) 1 5(19) A 44 6 — 0.7 1.0 0.7 — 25(57) — 8															symptoms
26 6 59 31 — 0.5 0.7 — 2(8) 2(8) 1 5(19) A 44 6 — 0.7 1.0 0.7 — 25(57) — S															pre BV
26 6 59 31 — 0.5 0.7 — 2(8) 2(8) 1 5(19) A 44 6 — 0.7 1.0 0.7 — 25(57) — S															symptoms at
26 6 59 31 — 0.5 0.7 — 2(8) 2(8) 1 5(19) A 44 6 — 0.7 1.0 0.7 — 25(57) — S															30 d
44 6 — — 0.7 1.0 0.7 — 25(57) — — 8	Brady (16)	26	9	29	31		0.5	0.7	İ	2(8)	2(8)	7		5(19)	All patients
44 6 — — 0.7 1.0 0.7 — 25(57) — S															>80 yr; cost
44 6 — — 0.7 1.0 0.7 — 25(57) — 5															of BV (11 d
44 6 — — 0.7 1.0 0.7 — 25(57) — 5															and \$30K)
44 6 — — 0.7 1.0 0.7 — 25(57) — 8															on 8/26 with
44 6 — — 0.7 1.0 0.7 — 25(57) — — 5															complications
44 6 — — 0.7 1.0 0.7 — 25(57) — — — Sy															(16 d and
44 6 — — 0.7 1.0 0.7 — 25(57) — — Sy															\$44K)
recath.; symptoms underestimat restenosis	Bashore (18)	44	9	1	1	-	0.7	1.0	0.7	and the same of th	25(57)	1	1	1	Systematic
symptoms underestimat underestimat restenosis															recath.;
underestimat															symptoms
restenosis															underestimate
															restenosis