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EDITOR’S PREFACE

Tak aim of these monographs is to report upon research carried
out in electronics and applied physics. Work in these fields continues
to expand rapidly, and it is recognised that the collation and dis-
semination of information in a usable form is of the greatest im.
portance to all those actively engaged in them. The monographs
will be written by specialists in their own subjects, and the time
required for publication will be kept to a minimum in order that
these aceounts of new work may be made quickly and widely
available.

Wherever it is practical the monographs will be kept short in
length to enable all those interested in electronics to find the
essentials necessary for their work in a condensed and concentrated
form.

D. W. Fry

AUTHOR’S PREFACE

THE first two chapters of this short monograph are concerned with
established mathematical techniques rather than with fresh ideas.
They provide the code in which so much of the mathematical theory
of electronics and radar is nowadays expressed. Information theory
is the latest extension of this code, and I hope that it will not be
considered improper that I have tried in Chapter 3 to summarise
so much of C. E. BHANNON’s original work, which already exists in
book-form (The Mathematical Theory of Communication, by CLAUDE
SuanwoN and WareeN Weaver). The account which is given in
Chapter 3 may perhaps spur the reader who has not studwd the
original literature into doing so.

Chapters 4 and 5 deal with some of the fascinating problens,
"which have been discussed so often in recent years, of detecting
signals in noise. The present approach was suggested to me by
SHANNON’S work on communication theory and is based on inverse
probability; it is my opinion that of all statistical methods, this one
comes closest to expressing intuitive notions in the precise language
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X PREFACE

of mathematics. Chapters 5, 6 and 7 are devoted to radar, which is
simple enough (ideally) to lend itself to fairly exact mathematical
treatment along the lines suggested in the previous chapters. This
material is based on papers which have appeared in technical
journals, Chapter 6 in particular being & revised acecount of work
originally carried out at T.R.E. in partnership with I.L.Davies. It
was this work which led to the present monograph, but it is hoped
that the first four chapters—originally conceived as an introduction
to the special problems of radar—may find an independent usefulness
for the reader whose interests are not so narrowly confined.

I have to thank the Chief Scientist, Mlmstry of Supply, for per-
mission to publish this book.

P.M.W.
Malvern
March, 1953.
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1

AN INTRODUCTION TO PROBABILITY
THEORY

1.1 THE RULES OF PROBABILITY

_ I» n possibilities are equally likely and exactly m of them have some
attribute 4, we say that the probability of 4 is m/n. Strictly, this is
not a definition of probability because it assumes that the notion of
equally likely possibilities is understood in the first place. From a
purely mathematical point of view, however, no definition is
required. All we need is a set of rules for adding and multiplying
probabilities, which are then taken as the basic postulates of the
theory. But the study of probability is made easier and the rules
become intuitive rathér than arbitary when from the beginning there
is an obvious practical interpretation, and this the opening remark
supplies.

Since probability is a fraction of equally likely possibilities, it is
often helpful to set these out in tabular form. Thus

4 A A BBBGBSZ¢(C 1)

signifies that P(4), the probability of 4, is  and so on. It is immedi-
ately evident that the probability of 4 or B is P(4) + P(B). This
is the sum rule and it applies only when 4 and B cannot simul-
taneously be true, in other words, when they are mutually exclusive.
When all miutually exclusive attributes have been taken into account,
. their probabilities will naturally add up to unity.

It frequently happens that two sets of attributes, each mutually
exclusive among themselves, have to be considered together. Sup-
pose, for instance, that we have eight pencils, three red (4), four
black (B) and one blue (C). The scheme (1) represents the equally
likely possibilities when one pencil is selected randomly. But the
same pencils may also be hard (J) and soft (K) as follows,

4 4 4 BB BBC(C @
J J KJ J J K K
1



2 PROBABILITY, INFORMATION THEORY AND RADAR

This scheme signifies that the probability of J is § and of K is §.
Suppose now that a chosen pencil is examined for colour only, and
found to be 4. The information rules out B and C from (2), so the
probability of J immediately changes, and becomes §. It is, there-
fore, important to state, in relation to any probability, what relevant
facts are already known. A brief notation is to write the uncondi-
tional probability of J as P(J) but to distinguish the probability
when A is given by putting A as a suffix. This brings us to the
product rule which gives the joint probability of a pair of attributes.
~ The probability of X and Y is

P(X, Y) = P(X)Px(Y) = P(Y)Pp(X) @)

For example, if X is 4 and Y is J in (2), we have the three equivalent,
expressions
P4,J)=}
PA)P,J) =%}
PUJ)P,(A)=¢§.%

If we have P(X) = Py (X), it follows from equation (3) that we also
have P(Y) = Px(Y). Thus knowledge of the one does not affect
the probability of the other, and we can say that X and ¥ are -
statistically independent. Only then may we write the product rule
in the simplified form

P(X, Y) = P(X)P(Y) . 4

though it is this form which is usually remembered.
The sum and product rules are the main axiomatic foundation
upon which the theory of probability rests.

1.2 BERNOULLI'S THEOREM

Of all theorems in probability, BerNoULLI’s is the one which gives *
the clearest insight into the behaviour of chance quantities. Suppose
that some event is known to have a probablhty p of ocourring
whenever a “trial” is made. “Event” and ‘“‘no event,” which we
shall denote symbolically by 1 and 0, are the two mutually exclusive
attributes. What can we say about the number of events which will
occur when 7 independent trials are made? Intuitively, we should,

of course, expect about np events; BERNoOULLI’S theorem eonfirms
this and makes it more precise.

L]



AN INTRODUCTION TO FROBABILITY THEORY 3

The first step is to consider any arbitrary sequence of results such as
01101. The probability of this particular sequence occurring is
given by the product rule for independent a.ttnbutes and is
(1 — plpp(l — p)p. There are

5.4.3

[:75 JS i
7 1.2.3

ways of obtaining three events in five trials when all the different
orders are counted, and all have the same probability. The total

=1,

O.Jlml.

.tl|l“““|h. r

Fig. 1. Symmetrical binomial distributions (Ordinates are probabilities,
abscissae number of events, and n the number of trials, each yielding
an event with probability 0-5)

(o]

probability of obtaining three events in five trials, by the sum rule,
- ig thevefore

Oyl — p)?

The general result, BERNOULLY’s theorem, is that the probability
of r events in » trials is

P,(r) ="C,p'1 — p)*~" (6)

The total probability of obtaining any number of events from 0 to n’
is thus

QA—-2r+...+CpQl—pr"+... +p" (6)

3



4 PROBABILITY, INFORMATION THEORY AND RADAR
which is equal, as it obviously should be, to unity. It is, in fact, the

expansion of [p+ (1~ )P 7
by the Binomial theorem.

' BemNOULLI’s probabilities, more usually called the bimomial
distribution, are illustrated in fig. 1 for p = 0-5 and » = 1, 10 and 50.
The probabilities are greatest in the neighbourhood of np events,
but the probability of obtaining exactly np events maybe very small.
The interesting thing is what happens when n becomes larger and
larger, p being held fixed. The peak at np moves to the right in
direct proportion to =z, the hump gets broader, and the probability
of exactly np events must therefore get smaller and smaller, since
the sum of all the terms is invariably unity. But the hump does not
broaden in direct proportion to the number of trials: its width
increases only as the square root of #. Consequently the ratio of
events to trials becomes more and more closely equal to p as » is
increased. In precise terms, it can be shown that the probability
of the number of events lying within the range

n(p + &) 8)
tends to unity as » increases, however small ¢ may be. This is a
most important fact: it lies at the root of statistics and of informa-
tion theory. It means that we can pretend that n trials will give
np events with an arbitrarily small fractional error provided = is

sufficiently large; this is what is generally meant by the law of
averages.

1.3 MOMENTS AND GENERATING FUNCTIONS

In most applications of probability theory to physical science, and
to electronics in particular, we have to deal with problems in which
unit probability is distributed over a set of quantitative attributes:
The significant feature of quantities—as opposed to qualities—is that
they can be ordered, and there is a “distance” between any two of
them. The attributes can meaningfully be represented as points on
a line, as in fig. 1, or more generally in an attribute-space of any
number of dimensions. This gives rise to a geometry of probability
distributions in which moments play an important part.

If P(r) is any distribution of probability at dascrete points along
a line, the nth moment is defined as

M, = SmP(r) (©)



AN INTRODUCTION TO PROBABILITY THRORY 5

The moment of order zero is, of course, unity. The first moment is
the centroid of the points 7, weighted by the P(r). This is the
average value of 7 which would be obtained when a large number of
independent determinations had been made. Forif N determinations
are made, and N is large enough, r will turn up roughly N P(r) times.
The average of the results will therefore be

__NP(0).0+4 NP(1).1+ NP@).2+. ..
— = .

M, (10)
In a gimilar way M, is the average value of #* (analogous to moment
of inertia) and so on. This justifies the more usunal notation

M,=7 11)

It will be obvious, more generally, that the average value (or
“‘expectation’) of any function f(r) is given by

f) = 3 P(r) (12)

r

The geometrical signifieance of the second moment, for which
f(r) = 7?2, lies in its relation to the spread of the probabilities about 7.
- Spread is most naturally measured by the mean squared deviation
of r from 7; thus

¢® = 3(r — r)2P(r) (13)
= Zr2P(r) — 2rZrP(r) 4 (F)2ZP(r)
=7~ (r)? (14)

The quantity o? the second moment minus the squared first
moment, 8 known as the variance of the distribution P(r). Iis
square root, g, is the standard deviation, and gives the width of the
hump in distributions such as the binomijal. This, however, is a
somewhat incautious statement, because the value of o can depend
markedly on the asymptotic behaviour of the very small probabilities
a long way from the centroid. SBome humped distributions yield an
infinite value of ¢, but this does not occur very often since most of
the probability distributions which arise in physics fall off at least
as rapidly as an exponential in the tails. The tails of the distribution
then make a very small contribution to the sum (18) and o is a
reasonable measure of spread. If a distribution has more than one
hump or is not of any simple type, the mean and standard deviation
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may not have any simple graphical interpretation, but they still
remain useful mathematical parameters.

Although the moments of a distribution may be evaluated directly
from equation (9), there is an alternative method of considerable
interest. First we form what is known as the generating function of
P(r), defined by

, (@) = Sz P(r) A (15)

Differentiation with respect to z gives
g'(z) = Zrar1P(r)
g"(x) = Zr(r — V)™ 2P(r)
and so on. If we now put z = 1 in ¢’ («), the first moment is obtained,

and in a similar way the second moment may be obtained from
¢"(x). Thus

r=g@q) K (16)
7= g"(1) + ¢'(1) | (a7
o?=g"(1) +¢'Q) — gL (18)

The method is particularly effective when applied to the binomial
distribution P,(r). We have

g(x) = (pzr + 1 — p)*
g'(1) =np
9"(1) = n(n — 1)p*

and hence
F=np (19)
72 = n(n — 1)p* 4 np (20)
o® = np(l — p) (21)

The, values of 7 and ¢? justify, in a rough and ready way, the agser-
tions made in section 1.2. The fact that o is proportional to the
square root of n does not of itself prove the remark at (8), but it
suggeats it. A complete proof of that result presentsno difficalty
of principle.

‘Moments have a specially simple interpretation as applied to the
magnitude of an electrie current. Consider the idealized current
waveform illustrated in fig. 2. The magnitude in each time-cell is
supposed to have been seleeted &t random, eéach one independently.
‘The only magnitudes allowed are integral multiples of unit current,



AN INTRODUOTION TO PROBABILITY THEORY 7

and the probability of a magnitude or 7 units occurring in any given
cell is P(r), say. We then have

r = d.c. component (22)
7% = mean power (23)

Here and elsewhere, the power of a current (or voltage) is to be
. understood as the power which would be dissipated in a unit resis-
tance. The -instantanéous power of any waveform then becomes
conveniently the square of the current or voltage.

) 1 1 } ' i
t ] [} ] H ] ]
H § H 1 ' h J
{ t ] 1 1
]

{
!
1
i
1
4
i
(]
E}

)

[ o

A e N I
TIME

Fig. 2. Idealised noise waveform

The equation (14) for variance in terms of moments may now be
expressed as follows :

-0® = mean fluctuation power = (total mean power) — (d.c. power)

(24)
When the random fluctuation is unwanted, it is “noise,” and the
variance of its magnitude distribution is the mean noise power.
Random fluctuations are not always noise; indeed, a communication
signal may fluctuate in what appears to be a random manner, and
the main feature of communication theory, as we shall see later,
is that signals and noise can both be treated as statistical phenomena.

1.4 CONVOLUTION

Snppose that we have to deal with a pair of independent random
quantities: the first one is always a whole number r and has the
probability distribution, P(r), the second is a whole number s with
distribution Q(s). A most important problem is to find the probability
distribution for r 4 s. .

The solution is quite straightforward. Let the sum of r and s be
denoted by «, and consider a fixed value of w. If the first quantity is
r, the seecond must be » — r, and the probability of obtaining these
two particular values is given by the product rule as

PO —1) 25)
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The probability of obtaining any given value of w is the sum of
the probabilities for all the different ways in which it can be made

up, ie. the sum of all products like (25) with r varying. Thus the
required distribution is

R(w) = SPQu — 1) e

It should be pointed out that whilst the symbol P is often used in a
purely operational sense, meaning ‘“‘the probability of . . . ,” the
symbols P, Q and R in (26) stand for definite mathematical functions
representing the probabilities of r, s and u respectively. Mathemati-
cally, equation (26) is a way of putting two funetions together and
forming a kind of resultant, In fact B is sometimes described as the

‘resultant’ of P and @, but the term convolution is more usual and
less ambiguous. The following notation will be uged:

R P*Q : (27)

It is very easy to show that the arguments rand.u — r in equation
(26) may be interchanged, and hence
| P*Q=Q*P @)

This commutative property is of course quite obvious in terms of the
original problem. It is also worth remarkmg that if P, @ and S are

three flmctlons, we have ‘
PX@*8) = (P Q)*8 (29)

and a unique significance therefore attaches to P*Q*S without
brackets.. It would be the distribution function for the sum of three
quantities, which makes the associative property obvious.

Let us now examine the convolution forinula in more detail.
Suppose that the random quantity r can only assume the values
0,1, 2or3andtha,tsca.nonlyb90 1 or 2. Then we have

R(0) = P(0)Q(0)
R(Q) = P0)QQ) + P)QO)

- R2) = POX2) + PLQQ) + P(2)QO)
R@) = P1)QER) + PER)Q(1) + P(3)Q(0)
R(4) = P2)Q2)+ PE)RQ)
R(@®) = P@E3)Q(2)
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This ean be set out in the form of a long multiplication,

QO QU Q@) |
PO) PQ) PR P

P0)Q0) PO)Q(1) P0)Q(2)
P1)Q0) PLQ(N) P(1)Q2)
P2)Q0) P@2)A(1) P2)Q2)
P(3)Q0) PE)Q(1) P3)Q(2)

_R(0) R() R®) R(3) EB4) R(5)

(30)
It should be noticed that the “multiplication” is a perfectly genuine
algebraic product of the generating functions of P and @. Thus
we have the following important equivalents:
Sum of random quantities
Convolution of probability distributions (31)
Product of generating functions

A further property is that the mean and variance of each quantity
is additive under convolution. Thus if g(z) is the generating functmn
of P*Q, we have

g(z) = SarP(r)S2*Q(s)
Differentiating, | ,
¢'(@) = SrartP(r)S2Qls) + Sa"P(r)Tsxs-Q(s)

By equation (16), the mean value of « is obtained by putting =1,
and hence

G=r-438 ' (32)
which is the first result. By further differentiation one can show,
using equation (18), that

0.2 = 0,2+ o2 (33)
where ¢,2 is the variance of u, ete. These two results are of extreme
usefulness.

The binomisl distribution illustrates all the above very satisfac-
torily. In seetion 1.2 we considered a trial of which the possible
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outoomes were 1 and 0, with probabilities p and 1 — p respectively.
‘We may therefore write

PO)=1—
©) p} 34)
P(l)=p
and the generating function of this simple distribution is
1 —p+px (36) -

The number of 1’s which will be obtained when »n independent trials
are made, i8 the sum of the results of each trial. Each trial has the
same distribution (34) and the same generating function (35). Thus
the distribution for the number of 1’s in # trials has, by rule (31), the
generating function

1'—p + pa)* (36)

which gives immediately the binomial distribution of order n. Tts
mean and variance, np and np(l — p) evaluated in section 1.3, are
each proportional to #, confirming equations (32) and (33).

1.5 EVENTS AT RANDOM IN TIME

Events at random in time frequently occur in physical problems;
and although not strictly necessary in the present monograph the
simple theory of them can hardly be passed over in this introduction.

Let time be divided into small intervals each of duration ét, and
let the probability of an event oceurring within any interval be p,
independently for each interval. For example, if p = 0-1, a sequence
such as the following might be obtained

0000100001000000010000000000000000000000
0000000101101000000000011100010010000000 -

The number of events » in unit time obeys a binomial distribution

P,(r), where n is the number of trials. Suppose now that the intervals

0t are made shorter and the probability p per interval proportionately

reduced such that the mean number of events in unit time is always

‘fixed and equal, say, to A. In the limit, we obtain events truly at

random in time. Thus, in unit time, we have .
: r=mnp=4 (87

whilst '

n-—>w,p->0 - (88)
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The generating function of P,(r) becomes, from (38) and (37)

gle) = {1 P 1)}

= gHe=1) (39)

The coefficient of 27 in the expansion of g(z) is, by definition, the
probability of r events. Thus we obtain

P(r) = %e“‘ (40)

which is the Porssox distribution. The mean and variance are both
equal to A, from (19), (21) and (38).

A further distribution of interest is the one for the time which
elapses between successive events. Strangely, as it seems at first,
this distribution is the same as that which describes the time

UNIT AREA

<)
Fig. 3. The e«xponential distribution
between any instant selected at random and the next event. The

probability that any interval in the discrete sequence will be followed
by s — 1 zeros and then by an event is

P(s) = (1 —p)p (41)
where, from equation (37), we have
- p = At 42)

since n = 1/(dt). In another form, the probability that the next
event ocours within an interval 8¢ a time ¢ later may be denoted by
q(¢)ot, where ¢ = sdt. Then we have

qt)3t = ( — ﬁ)eflzaa

and going to the hmlt 8 - 00, we have the ewpomntml distribution
(fig. 3)
q(tydt = de~%dt, = t>0 (43)



