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PREFACE AND GUIDE TO THE LITERATURE

The name ‘‘algebraic K-theory’’ describes a branch of algebra which
centers about two functors K, and K,, which assign to each associative
ring A an abelian group K A or K A respectively. The theory has been
developed by many authors, but the work of Hyman Bass has been particu-
larly noteworthy, and Bass’s book Algebraic K-theory (Benjamin, 1968), is.
the most important source of information. Here is a selected list of further
references:

D. S. Rim, Modules over finite groups, Annals of Math. 69 (1959),

700-712.

R. Swan, Projective modules over finite groups, Bull. Amer.

Math. Soc. 65 (1959), 365-367.

H. Bass, K-theory and stable algebra, Publ. Math. I.H.E.S.

22 (1964), 5-60.

H. Bass, A. Heller, and R. Swan, The Whitehead group of a

polynomial extension, Publ. Math. L.LH.E.S. 22 (1954), 61-79.

H. Bass, The Dirichlet unit theorem, induced characters, and

Whitehead groups of finite groups, Topology 4 (1966), 391-410.

H. Bass (with A. Roy), Lectures on topics in algebraic
K-theory, Tata Institute, Bombay 1967.

H. Bass and M. P. Murthy, Grothendieck groups and Picard
gro?zps of abelian group rings, Annals of Math. 8¢ (1967), 16-73
R. Swan, Algebraic K-theory, Lecture Notes in Math. 76,

Springer 1968. !
R. Swan (with E. G. Evans), K-theory of finite groups and
orders, Lecture Notes in Math. 149, Springer 1970.

vii



viii PREFACE

L. N. Vaserstein, On the stabilization of the general linear group
over a ring, Mat. Sbornik 79 (121), 405-424 (1969). (Translation
v. 8, 383-400 (A.M.S.).)

The main purpose of the present notes is to define and study an analo- 1
gous functor K,, also from associative rings to abelian groups. The

definition is suggested by work of Robert Steinberg. This functor K, is

related tq jKl and K, for example by means of an exact sequence
K,a - K2A > Kz(A/a)
> K;a > KIA - KI(A/Q)
S, K A > K (A/a),

associated with any two-sided ideal a in the ring A; where K2 a, K,a
and Koa are suitably defined relative groups. Here is a list of references
for K,:

R. Steinberg, Générateurs, relations et revétements de groupes
algebriques, Collog. Theorie des groupes algebriques, Bruxelles
1962, £13-127.

R. Steinberg (with J. Faulkner and R. Wilson), Lectures on
Chevalley groups (mimeographed), Yale 1967.

C. Moore, Group extensions of p-adic and adelic linear groups,
Publ. Math. I.H.E.S. 35 (1969), 5-74.

H. Matsumoto, Sur les sous-groupes arithmétiques des groupes
semi-simples déployés, Ann. Sci. Ec. Norm. Sup. 4€ serie, 2 (1969),
1-62.

H. Bass, K, and symbols, pp. 1-11 of Lecture Notes in Math.
108, Springer 1969.

M. Kervaire, Multiplicateurs de Schur et K-théorie, pp. 212-225

of Essays on Topology and Related Topics, dedicated to G. de
Rham (ed. A. Haefliger and R. Narasimhan), Springer 1970. !
J. Wagoner, On K2 of the Laurent polynomial ring, to appear.
B. J. Birch, K2 of global fields, Proc. Symp. Pure Math. 20,
Amer. Math. Soc. 1970.



PREFACE 1x,

J. Tate, Symbols in arithmetic, Proc. Int. Congr. Math, Nice,
to appear.
M. Stein, Chevalley groups over commutative rings. Bull.

Amer. Math. Soc. 77 (1971), 247-252.

It should be pointed out that definitions of K for all integers n >0
have been proposed by several authors. "See the following:

A. Nobile and O. Villamayor, Sur la K-théorie algébrique,
Ann. Sci. Ec. Norm. Sup. 4€ série 1(1968), 581-616.

R. Swan, Non-abelian homological algebra and K-theory, Proc.
Symp. in Pure Math. 17, 88-123, A.M.S. 1970.

M. Karoubi and O. Villamayor, Foncteurs K" en algebre et en
topologie, C. R. Acad. Sc. Paris 269 (1969), 416-419.

S. Gersten, Stable K-theory of discrete rings: 1 and I, to
appear.

J. Milnor, Algebraic K-theory and quadratic forms, Inventiones
math. 9 (1970), 318-344.

D. Quillen, The K-theory associated to a finite field:
I (mimeographed), 1970.

R. Swan, Some relations between higher K-functors, to appear.

These definitions are not mutually compatible, in general. Much work re-
mains to be done in clarifying the relationships between various defini-
tions. Note also that functors K for n <0 have been defined by Bass

(Algebraic K-theory, pp. 657-677).

The functors KO and K1 are both important to geometric topologists.
In the topological applications the ring A is always an integral group ring
ZIl, where I1 is the fundamental group of the object being studied. This
theory had its beginnings in J.H.C. Whitehead’s definition of the torsion
associated with a homotopy equivalence between finite complexes. The
Whitehead torsion lies in a certain factor group of KIZH. An important

further step was taken by C. T. C. Wall. Consider a topological space A



? y(A), Belonging to K ZII. Wall showed that A
: of a finite complex if and only if y(A) is an integer.
lo have shown that similar obstructions exist to the :
fitting a boundary onto an open manifold.
~ Recent work by J. Wagoner and A. Hatcher indicates that the functor
: %m simi}qr topological applications. If one is given a ‘‘pseudo-isotopy’’
of a closed manifold, then an obstruction to deforming it into an isotopy
lies in an appropriate factor group of KZZI]. Here is a list of. references:
C. T. C. Wall, Finiteness conditions for CW-complexes I,
Annals of Math. 81 (1965), 56-59; and II Proc. Royal Soc. A
295 (1966), 129-139.
L. Siebenmann, The structure of tame ends, Notices Amer.
Math. Soc. 13 (1966), 862.
J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966),
358-426. .
G. de Rham, S. Maumary, and M. Kervaire, Torsion et type
simple d’homotopie, Lecture Notes in Math. 48, Springer 1967.
Nl ‘Golo, An invariant of open manifolds, Izv. Akad. Nauk
SSSR Ser. Mat. 31 (1967), 1091-1104. (Translatmn v. 1, 1041-
1054 (A.M.S.).)
‘L. Siebenmann, Torsion invariants for ;;seudo-isotopies on
cIosed manifolds, Notices Amer. Math. Soc. 14 (1967), 942.
R M. F. Moss and C. B. Thomas (editors), Algebraic K-theory
. and its geometric applications, Lecture Notes in Math 108, Springer
: 1969 : ; ;
J. Wagoner, Algebraic invariants for pseudo-isotopies, Proceed-
of Liverpool Singularities Symposium I, Lecture Notes in Math.,
Springer, to appear.,

A strong impetus to the development of algebraic K-theory has been

provided by work on the c':ongrdence Subgroup problem, that is the problem
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of deciding_ whether every subgroup of finite index in an arithmetic group
(such as SL(n, A) where A is the ring of integers in a number field) con-
tains'a congruence subgroup. This is closely related to the problem of
computing K, a for an arbitrarily small ideal a C A. See the following, as
well as the papers of Moore and Matsumoto mentioned earlier:
: J. Mennicke,'. Finite factor groups of the unimodular group,
Annals of Math. 81 (1965), 31-37.
J.-P. Serre, Groupes de congruence, Seminaire Bourbaki,
19€ année (1966-67), n® 330. :
H. Bass, The congruence subgroup problem, pp. 16-22 of
Local fields, edited by T. A. Springer, Springer 1967.
H. Bass, J. Milnor, and J.-P. Serre, Solution of the con-
gruence subgroup problem for SL, (n > 3) and Spy, (0 >2),
Publ. Math. I.H.E.S. 33 (1967).
L. N. Vaserstein, K, -theory and the congruence subgroup
. problem, Mat. Zametki 5 (1969), 233-244 (Russian).
J.-P. Serre, Le probléme des groupes de congruence pour
SLZ’ Annals of Math. 92 (1970), 487-527.

I want to thank Hyman Bass, Robert Steinberg, and John Tate for many
valuable conversations, and particularly for access to their unpublished
work. Also I want to thank Jeffrey Joel for a number of suggestions, and
for his lecture notes (based on lectures at Princeton University in 1967),
which provided the starting point for this manuscript. Finally I want to
thank Princeton University, U.C.L.A., M.I.T., and the Institute for Ad-
vanced Study, as well as the National Science Foundation (grants G.P.
-7917, -13630, and -23305) for their support during the preparation of this

manuscript.
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§1. Projective Modules and KOA

The word ring will always mean associative ring with an identity

element 1.
Consider left modules over a ring A. Recall that a module M is free

if there exists a basis {ma} so that each module element can be expressed
uniquely as a finite sum ZAama, and projective if there exists a module

N so that the direct sum M @ N is free. This is equivalent to the require-
ment that every short exact sequence 0>X->Y->M->0 mustbe split

exact, so that Y = X e M.
The projective module group KOA is an additive group defined by gen-

erators and relations as follows. There is to be one generator [P] for each
isomorphism class of finitely generated projective modules P over A, and

one relation
[P]1+[Q] = [PeQ]

for each pair of finitely generated projectives. (Compare the proof of 1.1

below.)

Clearly every element of KOA can be expressed as the difference
[Pu] & [PZ] of two generators. (In fact, adding the same projective module
to P1 and F‘2 if necessary, we may even assume that P2 is free.) We

will give a criterion for the eguality of two such differences.
First another definition. Let Af denote the free module consisting of

all r-tuples of elements of A. Two modules M and N are called stably

isomorphic if there exists an-integer r SO that
MeAf = Ne A"

3

..



4 ALGEBRAIC K-THEORY

LEMMA 1.1. The generator [P] of KO/\ is equal to the generator

[Q] if and only if P is stably isomorphic to Q. Hence the dif-
ference [P ] - [PQ] is equal to [Ql] - [Q2] if and only if

P, #Q, is stably isomorphic to P,®Q,.

Proof. The group K A can be defined more formally as a quotient group

F/R, where F is free abelian with one generator <P> for each isomorphism
class of finitely generated projectives P, and where R is the subgroup
spanned by all <P> 4 <Q> — <P # Q>. (Thus we are reserving the symbol

[P] for the residue class of <P> modulo R.) Note that a sum <P1>+... +<Pp>
in F is equal to <Q,> ¢ ... + <Qp> if and only if

P1 = a1y Py, = Q"(k)
for some permutation 7 of {1,...,k}. If this is the case, note the resulting
isomorphism
pl B ... d pk = Ql s ... & Qk
Necw suppose that “M> = <N> mod R. This means that
<M> — <N> = Z(<P;> + <Q;> — <P; @ Q;>)
— S(<P’ 0> <P/ ® Q>
pY| \PJ\+ QJ PJ r*QJ,)
for appropriate modules P;, Q;, ij, QJ'
Transposing all negative terms to the opposite side of the equation and
then applving the remark above, we get
Mo (2 (P; rDQi)%EPJT@ZQJT) =~ Ne& (2P %)EQiaZ(P]f&aQJf)),
or briefly M ® X = N @ X, since the expressions inside the long paren-
theses are clearly isomorphic. Now choose Y so that X © Y is free, say
X @Y = A". Then adding Y to both sides we obtain M ® AT = N & A".
Thus M is stably isomorphic to N.

The rest of the proof of 1.1 is straightforward. @

If the ring A is commutative, note that the tensor product over A of
(tinitely generated projective) left A-modules is again a (finitely generated

projective) left A module. Defining

He5d

o= i BT ey
= ettt e B e Al

s g



81. PROJECTIVE MODULES AND KOA 5

(P]-[Q] = [Pe Q]

‘_ we make the additive group KOA into a commutative ring. The identity

element of this ring is the class [Al] of the free module on one generator.
In order to compute the group KOA it is necessary to ask two questions.
Question 1. Is every finitely generated projective over A actually
free (or at least stably free)?
Question 2. Is the number of elements in a basis for a free module
actually an invariant of the module? In other words if
AT = AS does it follow that r - s?

If both questions have an affirmative answer then clearly KOI\ 1s the

free abelian group generated by [A']. This will be true, for example, if A
ié a field, or a skew field, or a principal ideal domain.

Of course Questions 1 and 2 may have negative aﬁswers. For example
if A is the ring of endomorphisms of a finite dimensional vector space of
dimension greater than 1, then Question 1 has a negative answer; and if A
is the ring of endomorphisms of an infinite dimensional vector space then

uestion 2 has a negative answer. (The group K. A is infinite cyclic but
> g 0 y

not generated by [Al] in the first case, and is zero in the second.)

Here is an important example in which KO/\ i free cyclic.

LEMMA 1.2. If A is a local ring, then every finitely generated®

projective is free, and KOA Is the free cyclic group generated

by [A'].

First recall the relevant definitions. A ring element u is called a
unit if there exists a ring element v with uv = vu = 1. The set A® con-
sisting of all units in A evidently forms a multiplicative group.

A is called a local ring if the set m = A — A® consisting of all non-

units is a left ideal. It follows that m is a right ideal also. For if some

Compare Kaplansky, Projective modules, Annals of Mathematics 68 (1958),
372-377.




6 ALGEBRAIC K-THEORY

product mA w1th mem and A ¢ A were a unit, then clearly m would have
a right inverse, say mv = 1 This element v certainly cannot belong to
the left ideal m. But v cannot be a unit either. For if v were a unit,
then the computation
m = m(vv“l) = (mv)v”1 = w1

would show that m must be a unit.

This contradiction shows that m is indeed a two-sided ideal. The
quotient ring A/m is evidently a field or skew-field.

Note that a square matrix with entries in A is non-singular if and only

if the corresponding matrix with entries in the quotient A/m is non-singular.

To prove this fact, multiply the given matrix on the left by a matrix which
represents an inverse modulo m, and then apply elementary row operations
to diagonalize. This shows that the matrix has a left inverse, and a simi-
lar argument constructs a right inverse.

We are now ready to prove Lemma 1.2. If the module P is finitely
generated and projective over A then we can choose Q so that
P ® Q = A". Thinking of the quotients P/mP and Q/an as vector spaces
over the skew-field A/m, we can choose bases. Choose a representative
in P orin Q for each basis element. The above remark on matrices then
implies that the elements so obtained constitute a basis for P ® Q. Clearly
it follows that P and Q are free. Since the dimension of the vector gpace

P/mP is an invariant of P, this completes the proof.

Next consider a homomorphism
f:A > A d
between two rings. (It is always assumed that f(1) = 1.) Then every
module M over A gives rise to a module ‘

f#M = /\’®AM

over A’ Clearly if M is finitely generated, or free, or projéctive, or splits
es a direct sum over A, then f#M is finitely generated, or free, or projec-
tive, or splits as as a cotresponding direct sum over A’ Hence the corre-

spondence

g



§1. PROJECTIVE MODULES AND KO/\ 7

[P » [£4P]

gives rise to a homomorphism
fx : KoA > KO/\'
of abelian groups. Note the functorial properties
(identity)y = identity, (fo g)y = fy o g,.
Example 1. Let Z be the ring of integers. Then for any ring A there

is a unique homomorphism

i:2Z > A
The image

ixKyZ C KA

is clearly the subgroup generated by the free module [A']. The co-kernel

KOA/(subgroup generated by [Al]) = KOA/i* K,Z

is called the projective class group of A.

Example 2. Suppose that A can be mapped homomorphically into a
field or skew-field F. This is always possible, for example, if A is com-
mutative. Then we obtain a homomorphism

ik KOA » K,F = Z.

In the commutative case, this homomorphism is clearly determined by
the kernel of j, which is a prime ideal in A. Hence one can speak of the
rank of a projective module at a prime ideal p. If p O p’, note that the
rank at b is equal to the rank at p " For if we localize the integral do-
main A/p” at the ideal corresponding to p (that is adjoin the inverses of
all elements not belonging to p) we obtain a local ring which embeds in
the quotient field of A/p  and maps homomorphically into the quotient
field of A/p. Using Lemma 1.2, it follows that the ranks are equal. In
particular, if A is an integral domain, then the rank of a projective module
is the same at all prime ideals.

In any case, choosing some fixed homomorphism i A > F, since juiy
is an isomorphism, we obtain a direct cum decomposition

KOA = (image iy) @ (kernel j).
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The first summand is free cyclic, and the second maps bijectively to the
projective class group of A.

In the commutative case, note that (kernel jx) is an ideal in the ring
KO/\. We will denote this ideal by {(0/\, and write

KOA = ZaKA.

Example 3. Suppose that A splits as a cartesian product

of rings. Then the projection homomorphisms
KO/\ = KO/\I
give rise to a corresponding cartesian product structure
KA & KOA1 X KO/\2 X i X Ko’\k'

The proof is not difficult.

Such a splitting of A occurs for example whenever A is commutative
and artinian,® but is not local. For since A is commutative, the set of
all nilpotent elements forms an ideal. If A is not local, there must exist

an element \ which is neither a unit nor a nilpotent element. Since A is

artinian, the sequence of principal ideals
&) 20T ) Jass
must terminate, say (A") - (/\n“) - ... sothat A" = p/\2n for some p. But

this implies that the element e pA" is idempotent (ee = e), and hence
that A splits as a cartesian product

A= A/eyx \/(1 —e).
This splitting is not trivial since the hypothesis that A is neither a unit
nor nilpotent implies that e /# 1, 0. This procedure can be continued in-
ductively until A has been expressed as a cartesian product of local rings.

It then follows that

KO/\ =ZxZx..x2.

A ring is artinian if every descending sequence of ideals must terminate.

’
4
:
G
ﬁ
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Dedekind Domains

Important examples in which the ring KO/\ has a more interesting struc-

ture are provided by Dedekind domains. We will discuss these in some de-

tail, starting for variety with a non-standard version of the definition.*

DEFINITION. A Dedekind domain is a commutative ring without zero
divisors such that, for any pair of ideals a ¢ b, there exists an ideal ¢

with a = bc.

REMARK 1.3. Note that the ideal ¢ is uniquely determined, except in
the trivial case a = b = 0. Infactif bc = bc’, then choosing some non-

zero principal ideal bOA C b we can express bOA as a product rb and

conclude that rbc = rbc’, hence byt = byc’, from which the equality

¢ = ¢’ follows.

DEFINITION. Two non-zero ideals a and b in the Dedekind domain
A belong to the same ideal class if there exist non-zero ring elements x
and y so that xa = yb.

Clearly the ideal classes of A form an abelian group under multiplica-
tion, with the class of principal ideals as identity element. We will use
the notation C(A) for the ideal class group of A, and the notation
{a} e C(A) for the ideal class of a.

Note that {a} = {b} if and only if a is isomorphic, as A-module, to §.
For if ¢:a - b is an isomorphism, then choosing a, € @, the computation
ayh(a) = B(aya) = p(ay)a shows that a b = p(a,)a.

Important examples of Dedekind domains can be constructed as follows.
Let F be a finite extension of the field Q of rational numbers. An element

of F is called an algebraic integer if it is the root of a monic polynomial

* :
The usual definition is of course equivalent to the one given here. For further

information, see Zariski and Samuel, Commutative Algebra [, Van Nostrand 1958; or
Lang, Algebraic Number Theory, Addison-Wesley 1970; as well as Cartan and Eilen-
berg, Homological Algebra, Princeton University Press 1956.



