/\35&/[[()\/
gnguage
ﬂ ofodfc mming

FORTHE)SO O O .

ARTHUR GILL
EDWARD CORWIN
ANTONETTE LOGAR

ASSEMBLY LANGUAGE
PROGRAMMING
FOR THE 68000

Arthur Gill
Edward Corwin
Antonette Logar

Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data
Gill, Arthur (date)

Assembly language programming for the 68000.

Includes index.

1. Motozrola 68000 (Microprocessor)—Programming.
2. Assembler language (Computer program language)

1. Corwin, Edward (date) . II. Logar,
Antonette (date) . IIL Title.
QA76.8.M6895GS55 1987 005.265

ISBN 0-13-049529-8

To our parents

Editorial/production supervision: Linda Zuk
Cover design: Diane Saxe

Manufaeturing buyer: Ed O’Dougherty
Cover photo courtesy of Motorola, Inc.

s

© 1987 by Prentice-Hall, Inc.
A division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

0 9 8 7 6 5 4 3 2

ISBN 0-13-049529-48 025

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

86-15118

PREFACE

The objective of this book is to familiarize the reader with the basic organization and
operational features of the Motorola 68000 and to present assembly language techniques
for this computer. It is not, per se, a general text on machine structures, and the authors
do not attempt to provide a comprehensive treatment of available computer organizations
and assemblers. However, to the extent that the concepts and methods governing the
operation and programming of the 68000 are used in many other computers, the material
in this book should provide the reader with good preparation for the operation and pro-
gramming of other machines.

Chapter 1 provides an outline of algorithms for converting numbers from one sys-
tem (binary, hex, decimal) to another. The algorithms are not provided with proofs, and
are intended to serve only as reference. Chapter 2 describes the organizational structure
of the 68000 (the central memory, central processor, and peripheral devices). Chapter 3
explains how numbers (integer and floating-point), characters, and strings are represented
in the 68000. Chapter 4 describes the 68000’s instruction formats and addressing modes.
And Chapter S introduces the reader to assembly language programming.

The first five chapters should provide the reader with sufficient background to
write simple programs for the 68000. The remaining chapters delve deeper into opera-
tional details and describe additional techniques. Chapter 6 introduces stacks and sub-
routines (including recursion). Chapter 7 looks more closely at the 68000’s arithmetic
(including double-precision) and other operations, such as the test, comparison, branch,
and shift operations. Chapter 8 explains the trap and interrupt mechanisms. Chapter 9
describes the workings of assemblers and linkage editors and the notion of relocation.
(No particular assembler or linkage editor is used, and the concepts discussed are quite
general.) Chapter 10 introduces some advanced assembler facilities, such as macros,
repeated assembly, and conditional assembly.

The book ends with a number of appendixes, which consist of reference lists and
tables (character codes, summary of addressing modes, lists of instructions, and so forth).
An appendix on programming style is also included, which should be carefully read by
the beginner.

Each chapter concludes with a set of exercises that serve to illustrate and sometimes
complement the material in the text. The reader is encouraged to solve the problems and

vii

viii

PREFACE

run the programs included in these exercises. True assimilation of the material in this
book can come about only through practice—by the actual writing and execution of
programs.

The only prerequisite to this book is some experience with high-level language
programming. No particular language is assumed, but it is taken for granted that the
reader is familiar with the notions of an algorithm, a flowchart, and a stored program.

It is not our intent that this book stand alone as a course text. Since it does not
describe all the fine details of the 68000 instructions and assembler directives, students
should have access to a 68000 microprocessor handbook and the assembler manual appro-
priate to their particular installation, where these details can be found when needed.
Little is said in the book regarding peripheral equipment (only the terminal and clock
device are treated in detail), and students doing I/O programming may wish to refer to
peripherals handbooks and local manuals for assistance.

The assembler used in this text contains features common to most 68000 assem-
blers. It is named TASTE, and was written by two South Dakota Tech graduate students,
John Kjellevold and Jon Sundfjord.

The authors are indebted to Dr. Karen Whitehead for reviewing the manuscript and
offering much useful advice, Thanks are also due Dr. David Ballew and Professors Harold
Cards, Julie Dahl, and Roger Opp for helpful comments and suggestions. And, finally,
thanks to Tara and Rob Powles for their help with the manuscript.

CONTENTS

PREFACE vii

T NUMBER SYSTEMS 1
1.1 Decimal-to-Binary Conversion, 1
1.2 Decimal-to-Hexadecimal Conversion, 3
1.3 Binary-to-Decimal Conversion, 4
1.4 Hexadecimal-to-Decimal Conversion, 5
1.5 Hexadecimal-to-Binary Conversion, 6
1.6 Binary-to-Hexadecimal Conversion, 6
1.7 Binary and Hexadecimal Addition, 7
Exercises, 8

2 THE ORGANIZATION OF THE 68000 9
2.1 The Central Memory, 9
2.2 The Central Processor, 10
2.3 The Terminal and the Communication Chip, 12
24 The Line Clock, 14
Exercises, 14 °

3 REPRESENTATION OF NUMBERS AND CHARACTERS 15
3.1 2’s Complement Representation, 15
3.2 Addition and Subtraction, 19
3.3 Character Representation, 20
3.4 Floating-Point Representation (Optional), 22
Exercises, 23

CONTENTS

4 INSTRUCTIONS AND ADDRESSING MODES 25

4.1
4.2
43
44
45
4.6

The Execution Cycle, 25

Addressing Modes, 26

Single-Operand and Double-Operand Instructions, 32
No-Operand Instructions, 42

Machine Language, 42

On the Contents of a Computer Word, 45

Exercises, 46

5 ASSEMBLY LANGUAGE PROGRAMMING 48

5.1
5.2
33
54
5.5
5.6

Assembly Language versus Machine Language, 48
Assembly Language Directives, 49

Assembly Language Program Format, 52
Example 1: Echo Keyboard Input to Screen, 53
Example 2: Multiple Echo, 56

Coding Hints, 58

Exercises, 61

6 STACKS AND SUBROUTINES 64

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Stacks, 64

Example: Backward Echo, 66
Subroutines, 66

Subroutine Call and Return, 69
Argument Transmission, 70
Nested Subroutines, 75
Recursive Subroutines, 79
Example—Tower of Hanoi, 81
Coroutines, 86

Exercises, 87

7 ARITHMETIC OPERATIONS 92

7.1
7.2
73
74
7.5
7.6
1.7

Carry and Overflow Under Addition, 92
Carry and Overflow Under Subtraction, 94
Double-Precision Arithmetic, 95

The TST and CMP Instructions, 97

More on Branch Instructions, 98

Shift Instructions, 103

Example: ASCII-to-Binary Conversion, 105

Exercises, 111

CONTENTS

8 TRAPS AND INTERRUPTS 116
8.1 Traps, 116
8.2 Some Examples of Traps, 117
8.3 Program Traps, 119
8.4 Interrupts, 120
8.5 Why Use Interrupts?, 121
8.6 Priority Interrupts, 123

8.7 Timer Interrupts Using an MC68230 Parallel Interface and Timer (PI/T), 125

8.8 Example: Time Request, 126
Exercises, 130

9 ASSEMBLERS AND LINKAGE EDITORS
9.1 The Two-Pass Assembly Process, 135
9.2 Example of Assembler Listing, 138
9.3 Absolute and Relocatable Addresses, 138
94 The Linkage Editor, 140
9.5 Address Modification, 141
9.6 Global Symbols, 143
9.7 The Two-Pass Linkage Process, 143
9.8 Position-Independent Code, 145
Exercises, 146

135

10 ADVANCED ASSEMBLY LANGUAGE TECHNIQUES

10.1 Macros, 150

10.2 Macro Definitions and Macro Calls, 152
10.3 Local Symbols, 158

104 Repeat Directives, 160

10.5 Conditional Assembly, 163

Exercises, 168

Appendix A 68000 Organization 172
Appendix B ASCII Character Set 174
Appendix C 68000 Addressing Modes
Appendix D 68000 Instructions 180
Appendix E 68000 Machine Language
Appendix F Notes on Programming Style
Appendix G Answers to Selected Exercises

INDEX 245

235

238

150

NUMBER SYSTEMS

As we work with the 68000, we shall make extensive use of the binary and hexa-
decimal (hex) number systems, as well as the decimal system. It is important that the
student acquire, as soon as possible, the facility to convert from one system to another.
In this chapter we shall outline, without proof, some algorithms for carrying out these
conversions. Students familiar with these algorithms may proceed directly to Chap-
ter 2,

In this chapter, a “number” will mean a non-negative integer (0, 1, 2, .. .). The
number N will be denoted by Nyo, Nyg, or N, if it is in the decimal, hexadecimal, or
binary system, respectively. However, the subscript may be dropped if it is understood
from the context.

An m-digit number will be written symbolically as D.,_y. - .D;Dg [D; being the
(i+1)st digit from the right] .

In all flowcharts, an oval-shaped box will represent an entry or an exit point, and
a diamond-shaped box will represent a branching point.

1.1 DECIMAL-TO-BINARY CONVERSION

The flowcharts in Figures 1.1 and 1.2 describe algorithms for converting a decimal
number N into its binary equivalent M.

Example (Subtraction-of-powers method)

N=21710
217 —27=217 — 128 =89 D,=1)
89 —26=89 — 64 =25 (Dg=1)
25-2%=25-16=9 (Ds=1)
9-23=9-8=1 (D;=1)
1-2°=1-1=0 (Do=1)
M =11011001,

NUMBER SYSTEMS

Find greatest power
of 2, say 2k,
not exceeding X.*
D,~—1
X-X —2¢

|

Figure 1.1

1

M=D__;..D;Dg
(with all D, not

previously assigned
set to 0)

*Use Table 1.1

Decimal-to-binary conversion by subtraction of powers.

Example (Division method)

N =217
217 is odd
217/2 =108 is even
108/2 = 54 is even
54/2 =27isodd
27/2 =13isodd
13/2 =6iseven

6/2 =3isodd
3/2 =1isodd
1/2 =0

M =11011001,

(Do=1)
(D,=0)
(D,=0)
(D3=1)
(Ds=1)
(Ds=0)
(Ds=1)
(D;=1)

CHAP. 1

SEC. 1.2 DECIMAL-TO-HEXADECIMAL CONVERSION 3

Yes

!

X=—qt(X/2)*
m-<—m + 1

I *qt(a/B) = integer quotient a/B

Figure 1.2 Decimal-to-binary conversion by division.

1.2 DECIMAL-TO-HEXADECIMAL CONVERSION

The flowcharts in Figures 1.3 and 1.4 describe algorithms for converting a decimal
number N into its hexadecimal equivalent M. Powers of 16 are listed in Table 1.1, hexa-
decimal digits are listed in Table 1.2.

Example (Subtraction-of-powers method)
N =2591,,

2591 — 10*16%= 2591 — 2560 = 31 (D2=10 = Asq)

31— 1*16'= 31— 16=15 (D;=1)

15— 15*16°= 15— 15= 0 (Do =15 =Fyq)
M=AlF

NUMBER SYSTEMS CHAP. 1

Yes

M-D,, ;..D; Dy

Find greatest number (with all Dy

not previously assigned

of form
2165 (1 <a<15) set to 0)
not exceeding X.*
D, ~a
X+—X— (a16")
J *Use Table 1.1

Figure 1.3 Decimal-to-hex conversion by subtraction of powers.
Example (Division method)
N =2591,
2591/16 = 161 (remainder 15) (Do=F)
161/16 = 10 (remainder 1) (D;=1)
10/16 = O (remainder 10) (D,=A)
| M= AlF

An alternative method consists of first converting N into binary as shown in Section
1.1,and then converting the result into hexadecimal as shown in Section 1.6.

1.3 BINARY-TO-DECIMAL CONVERSION

IfN=D_ _,...DDoisabinary number, then its decimal equivalent is:

m-1

M=) D*2
i=0

(Powers of 2 are listed in Table 1.1)

SEC. 1.4 HEXADECIMAL-TO-DECIMAL CONVERSION

Yes
N=0 +
No M=—0
X=—N
—
Yes
X=0 +
No M=D, _;..D; Dy
D, ~— rm(X/16)*
X—atx/16)
m-—m+ 1
*qt(a/B) = integer quotient a/f
rm(a/B) = remainder of a/g

Figure 1.4 Decimal-to-hex conversion by division.

Example
N=1011100
M=22+23+42%42=448+16+64=92,

14 HEXADECIMAL-TO-DECIMAL CONVERSION

IEN=D_ _,...D;Dyis a hexadecimal number, then its decimal equivalent is:

m-1 .
M = Y. D16l
i=0

(Powers of 16 are listed in Table 1.1.)

Alternatively, the decimal equivalent can be written as

M=(...((D

m—1

*16 +D, ,)*16+D__)*16+...+D;)*16+ D,

The following examples illustrate how these two forms can be used to compute
the decimal equivalent of a hexadecimal number.

6 NUMBER SYSTEMS CHAP. 1

Example (Sum-of-powers method)

N=31074

M =7*16°+0*16! + 1*¥16% + 3*163
=7*1 +0*16 +1%256 +3*4096
= 7 + 0 +256 +12288
=12551

Example (Multiply-and-add method)

N=3107
3*16 +1= 48+1= 49
49%16 +0= 784+0= 784
784*16 +7 = 12544 +7 = 12551
M =12551y

1.5 HEXADECIMAL-TO-BINARY CONVERSION

The binary equivalent M of the hexadecimal number N is obtained by replacing each
digit in N with a group of four binary digits as shown in Table 1.1. (Leading Os in the
leftmost group can be deleted.)

Example
N =3D6C,¢

M=11 1101 0110 1100,

TABLE 1.1 POWERS OF 2 AND 16

16°=2%= 1 162=2% = 256
e 3 22 = 512
2= 4 219= 1024
2%= B 2= 2048

16'=2%= 16 163=212= 4096
25= 32 213= 8192
26= 64 214 = 16384
27= 198 215=32768

1.6 BINARY-TO-HEXADECIMAL CONVERSION

The hex equivalent M of the binary number N is obtained by partitioning N into four-
digit groups from right to left and then replacing each group by a hex digit as shown in
Table 1.2. (If the length of N is not divisible by 4, add enough leading Os to make it s0.)

SEC. 1.7 BINARY AND HEXADECIMAL ADDITION

TABLE 1.2 DECIMAL-HEXADECIMAL-BINARY CONVERSION

Decimal Hex Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001

10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Example
N =1101011010001111=1101 0110 1000 1111
M= D68F15

1.7 BINARY AND HEXADECIMAL ADDITION

Binary numbers are added as if they were decimal, except for the following rules:
1+1=0 (carry 1)
1+1+1=1 (carry 1)

Example
101101,
+100111,
1010100,

The most straightforward method for adding two hex numbers is to add as if
they were decimal, except for the following rules:

1. Ifadigitisaletter (A to F), convert it to decimal.

NUMBER SYSTEMS CHAP. 1

2. If the sum, S, of two digits (added as if they were decimal) is 16 or more, then
replace S with S-16 and carry 1 (e.g.,9 +9 =2 carry 1).
3. If the sum of two digits (added as if they were decimal) is 10 to 15, then replace
it with the appropriate letter, A through F (e.g.,5 +7 = 1240 = Cy¢)-
Example
7A34D
+B2C364¢
12CF83,
EXERCISES
1.1. Using both the subtraction-of-powers and the division method, convert the
following decimal numbers into their binary and hex equivalents.
a. 233710
b. 10000,
¢. 16383
12. Convert the following binary numbers into their decimal and hex equivalents.
a, 1111111,
b. 10000001,
c. 1010011100101110,
1.3. Convert the following hex numbers into their decimal and binary equivalents.
a. 8FF16
b. 9A86
c. CAFE
1.4. Perform the following binary additions and check the results by converting the
numbers into decimal.
a. 1011010, + 11010,
b, 1111101, + 1110,
1.5. Perform the following hex additions and check the results by converting the
numbers into decimal.
a, 16A,¢ + FFF
b. 18F 6 + 2ECs
1.6. Compute the following binary product and check the result by converting the
numbers into decimal. ’
11010111, * 100101,
1.7. Show that the binary equivalent of 2X—1is 111 ... 1 (k times).

THE ORGANIZATION OF
THE 68000

A Motorola 68000-based computer system consists of a Motorola 68000 central
processor (CP), where all computations take place, the central memory (CM), where the
data and program are stored; and peripheral devices, such as the terminal, clock, and the
devices needed to communicate between the 68000 and the terminal. In this text we
shall assume a very rudimentary 68000 configuration with only a terminal, a clock, and
a communication device as peripheral devices. Details on these and other devices can be
found in the manuals for the particular devices.

Strictly speaking, “68000” refers to the microprocessor chip itself (consisting of
the CP only). However, for the sake of brevity, in the remainder of this text the designa-
tion 68000 will refer to the entire system—CP, CM, and peripherals—and not just the
chip.

Figure 2.1 outlines the general structure of the 68000 CP along with central
memory and peripheral devices. In this chapter we shall describe the main features of
the various components shown in this figure with the exception of the clock control and
status registers, These registers, together with the interrupt feature of the communication
device, will be discussed in Chapter 8.

A symbol by itself, for example X, will represent a CM address or a register name.
The notation (X) will stand for “the contents of X”. Similarly, ((X)) will stand for the
“contents of (X)” (i.e., the contents of the memory location whose address is found in
X). For the sake of readability, the name of a register will sometimes be used to indicate
its contents when no other meaning is possible. Thus, DS and (D5) will both be used to
indicate the contents of register DS. For example, “add D5 to D3” and “add (D5) to
(D3)” will both be used and will mean the same thing. The latter is perhaps more tech-
nically accurate, but the former is easier to read.

2.1 THE CENTRAL MEMORY
The central memory of a computer is also called “main memory”, “primary memory”,
“RAM” (random access memory), and “core” (a term left over from the days when
most central memories were constructed from magnetic core elements).
The basic memory element of a computer is the biz, which is capable of holding

9

