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Foreword

On three hot days in August 1988, about 70 people gathered in Boston to discuss new
ideas and results on inductive inference, pattern recognition and machine learning. While a
variety of disciplines were represented, the majority of those attending were theoretical
computer scientists, primarily interested in the theory and analysis of learning algorithms.
This volume is the official proceedings of that meeting, which was called the (First)
Workshop on Computational Learning Theory. It contains papers for the talks that were
presented in the technical sessions of the workshop, abstracts of some of the work in pro-
gress reported by the attendees, and a summary of the panel discussion "The Role of Theory
in Learning Research."

Since, in light of the exchanges during and after the panel discussion, it is unlikely that
any two people attending could agree on what computational learning theory is, no attempt
will be made to define the term here. However, it is clear that the spirit of work can be
traced back to the early work on inductive inference by Gold, Blum & Blum and others, as
recently surveyed in [2]. Subsequent work in this area has covered a wide spectrum of
issues, from recursion-theoretic characterizations of inferable function classes to the design
of practical learning algorithms for particular cases. The papers of Case, Kurtz & Royer,
Daley, Gasarch & Smith, Gasarch, et al., and Cherniavsky, et al. in this volume represent
new contributions to the more abstract aspects of this line of investigation, while the papers
of Sakakibara, Marron, Li & Vazirani, Ibarra & Jiang, and Porat & Feldman deal with more
concrete questions concerning the problem of learning automata and formal languages.

One particular inference model that addresses the problem of designing practical learn-
ing algorithms is the learning framework recently proposed by Valiant [5]. This model com-
bines polynomial restrictions on computational resources with a weaker, probabilistic cri-
terion for successful inference. Applications of this framework to machine learning prob-
lems in artificial intelligence work are discussed in [3] and [4]. A more general viewpoint on
this and related frameworks is given in [1]. In this volume, the papers of Haussler, et al.,
Linial, et al., Rivest & Sloan, Benedek & Itai, Vitter & Lin, Boucheron & Sallantin, Ehren-
feucht, et al., Shvaytser, Sloan, Shackleford & Volper, and Ehrenfeucht & Haussler give
further results within this framework and close variants.

It is clear that much of the recent increased attention on computational learning in the
scientific community as a whole is related to the sudden widespread interest in neural net-
works as models of computation. Several papers in this volume specifically address the
problem of learning in artificial neural networks (Judd, Blum & Rivest, Raghavan, and Vali-
ant), from the perspective of theoretical computer science. We believe that work on this
problem may benefit from this perspective, and expect to see more participation from the
theoretical computer science community in this area in the future.

The remaining papers discuss more abstract problems related to making predictions
(Haussler, et al., Laird, and DeSantis, et al.) and learning Horn sentences (Angluin and Ban-
erji). Many additional topics are addressed in the abstracts of work in progress. Some of
these abstracts should also be consulted for further work on topics discussed in the technical
papers. In particular, further results on topics discussed in the papers of Li & Vazirani,
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Ibarra & Jiang, and Porat & Feldman are mentioned in the abstracts of Kearns & Valiant
and Pitt & Warmuth. We note also that the question of efficiently learning regular
languages by equivalence queries, mentioned as open in the Ibarra & Jiang paper, was
resolved shortly after the workshop [6].

In short, this volume represents a rather eclectic group of papers from the emerging,
interdisciplinary field of computational learning theory. It is our belief that this area of
investigation will be fruitful in the coming years, and it is our hope that this workshop and
the resulting proceedings will contribute to its development. We wish to thank all those who
made this workshop possible, including the program committee (Dana Angluin, John Cher-
niavsky (chair), Ron Rivest, Carl Smith, Leslie Valiant, and Manfred Warmuth); local
arrangements (Be Hubbard and Ron Rivest) and our sponsors at the National Science Foun-
dation and the Office of Naval Research. As this was the first workshop we have organized,
it was certainly a "learning" experience for us. We hope that, in a different way, it is for you
too.

David Haussler and Lenny Pitt, co-chairs
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Learning in Neural Networks
extended abstract

Stephen Judd
COINS dept., University of Massachusetts, Amherst, MA 01003, U.S.A.
Jjudd@cs.umass.edu

Abstract

We formalize a notion of learning that characterizes the training
of feed-forward networks. In the field of learning theory, it stands as
new model specialized for the type of learning problems that arise in
connectionist networks.

We prove the general problem and several sub-cases NP-complete
and show one very similar sub-case to have a polynomial time algo-
rithm. The broad class of sub-cases is formed by constraining the
network architecture to have bounded depth and unbounded width.

1 Introduction

We formalize a notion of loading information into connectionist networks
that characterizes the training of feed-forward neural networks. The for-
mulation is similar to Valiant’s [Val84] in that we ask what can be feasibly
learned from examples and stored in a particular data structure. QOur data
structure is more particular than Valiant’s since he requires only that the
result be a ‘sentence’ in a language described by syntactic rules. In our
form, the result must be a particular ‘sentence’ where the ‘words’ are not
known in advance but their position and relationships are fully specified.
This corresponds to the problem of finding retrieval functions for each node
in a given network.

This loading problem is NP-complete for general networks, but we iden-
tify some polynomial-time problems yielded by placing constraints on the
network architecture. The major focus of these constraints is on ‘shallow’ ar-
chitectures which are defined to have bounded depth and unbounded width.
We introduce a perspective on shallow networks, called the Support Cone
Interaction (SCI) graph, which is helpful in distinguishing tractable from
intractable subcases: When the SCI graph has tree-width O(logn), learning
can be accomplished in polynomial time; when its tree-width is n®(1) we find
the problem NP-complete even if the SCI graph is a simple 2-dimensional
planar grid. Tree-width is a generalization of the graph-theoretic notion of
bandwidth.
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2 Relationship to Valiant’s Work

Valiant [Val84] established a definition of learning concepts from examples
which has subsequently been elaborated by others.

Basically, Valiant’s theory is intended to determine whether concepts of
a certain class are feasibly learnable (i.e. requiring only polynomial time).
For instance, if a concept can be expressed in conjunctive normal form with
at most 4 variables per disjunct, is it possible to deduce that expression
from seeing examples alone? The machine is required to find an expression
in the given form that expresses whether a given bit string is a positive or
negative example of a concept.

We [Jud87] initiated a different field of learning theory which is a direct
formulation of a learning problem arising from the connectionist model of
computation. That paradigm is concerned not just with what is feasibly
learnable, but with what is feasibly learnable in a machine with a certain
fized structure. It requires that a representation for the learned data be
found that can be embodied in a specific network structure. To achieve it,
details of the function at each point in the net are alterable but no alterations
to the connectivity of the network are allowed. For example, if the given
network were this:

and the data to be learned were values for f, z, y, and z such that f were some
function of z, y, and z, then the objective of the learning system would be not
only to discover the function f(z,y, z) but also to find 3 more functions a, b,
and c¢ such that f(z,y,z) = ¢(z,a(z,y),b(y,2)). This is more constrictive
than Valiant’s formulation because Valiant places only general grammatical
guidelines on the form of f where we have an exact expression, minus only
the specifications of a,b, and c¢. This prior knowledge of the form does
not make the general learning paradigm any easier or harder, but merely
different. It asks a question about whether a particular network can be made
to represent some data, not whether it is possible to to find some network
to represent those data.
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3 A Formalization of Loading

3.1 The Learning Protocol

The type of problem investigated here is known as supervised learning. In
this paradigm input patterns (called stimuli) are presented to a machine
paired with their desired output patterns (called responses). The object of
the learning machine is to remember all the associations presented during a
training phase so that in a later testing phase the machine is able to emit
the associated response for any given stimulus.

In what follows, every stimulus o is a fixed-length string of s bits, and
every response p is a string of r bits with “don’t cares”, that is ¢ € {0, 1}¢
and p € {0,1,*}". The output from a net is an element of {0,1}". The
purpose of a response string is to specify constraints on what a particular
output can be: we say that an output string, 8, agrees with a response
string, p, if each bit, 6;, of the output equals the corresponding bit, p;, of
the response whenever p; € {0,1}. Each stimulus/response pair is called
an item. A task is a set of items that the machine is required to learn and
typically it has far fewer than 2° items. To be reasonable every stimulus
in a task should be associated with no more than one response, so we can
think of a task as a partial function.

3.2 Network Architecture

The particular style of connectionist machines considered here is that of
non-recurrent, or feed-forward, networks of computing elements. This is
a generalized combinational circuit; the connections between nodes form a
directed acyclic graph, and the nodes perform some function of their inputs
as calculated by previous nodes in the graph.

We define an architecture as a 5-tuple A = (P,V, S, R, E), where
P is a set of posts,
V is a set of n nodes: V = {vy,vy,...,v,} C P,
S is a set of s input posts: S =P -V,
R is a set of r output nodes: R C 'V, and
E is a set of directed edges: E C {(v;,v;) : v;€P, v;€V, ¢ < j}
The constraints on the edges ensure that no cycles occur in the graph. De-
note the set of input posts to node vy, as

pre(ve) = {v; : (vj, vk) € E}.
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3.3 Node Functions

Each node in a network contributes to the overall computation by taking
signals from its input edges and computing an output signal. In our analysis,
we consider only binary-valued functions.

fi : {0, 1}IPre®dl — {0, 1}

The function f; is a member of a fixed set 7 of functions. For our purposes
it is not too critical what the set is but our results hold for the customary
case where ¥ is the set of linear threshold functions.

A configuration of a network is an assignment of some node function to
each node in the architecture:

F:V -7,

where f; = F(v;) means that f; is the function that node ¢ computes.

3.4 The Computational Problem

In a configured network, every node performs a particular function, and the
network as a whole performs a particular composite function. An architec-
ture, A, and a configuration, F, together define a (total) mapping from the
space of stimuli to the space of responses

M# - {0,1}" — {0,1}"

and this defines the retrieval behaviour of a network.

Recall that an item in a task is a pair of strings (o, p). When the posts
in S are given the values of respective elements of o, the network mapping
defines values for each post in R. It is required that these retrieved values
agree with respective elements of p.

The loading problem can now be defined.

Instance: An architecture A and a task T'.

Question: Find a configuration F' for A
such that T C {(o, p) : M& (o) agrees with p}.

This paper is a report on the computational complexity of the above decision
problem and into some special cases of the problem.

5
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4 Complexity Results

Theorem 1 Loading is NP-complete even when
e the architectures are restricted to be of depth < 2 and of fan-in < 3,
e tasks are restricted to be monotonic,
e there are there are only two bits in the stimulus strings (s=|8|=2),
e tasks are restricted to be of no more than 3 items,

e tasks are restricted to be performable by the network using only the
node functions AND and OR, but any Boolean node functions may be
used to find a configuration for it and

o only 67% of the items are required to be retrieved correctly.

O

A proof is available in [Jud88b] and different one can be found in [Jud87].

Definition In an architecture A = (P,V,S, R, E), each output node z €
R has a support cone, sc(z), which is the set of all nodes in V that can
potentially affect the output of that node; that is, it is the set of predecessor
nodes

sc(z) = {z} U {sc(y) : y € pre(z) N V}
The network retrieval behaviour at any particular output node is determined
by (and only by) the functions assigned to each node in its support cone.

Definition A support cone interaction graph (SCI graph) for an architec-
ture, is an accounting of the interactions between support cones. It is a
graph with nodes {z1,22,. -, z,} corresponding one-to-one with the output
nodes, R, and having edges {(zi,2;) : sc(R;) Nsc(R;) # 0}.

Definition A family of architectures is said to be shallow if the size of the
largest support cone in each architecture is bounded by a polynomial in n,
the number of nodes in the architecture.

The complete configuration space for any support cone in any architec-
ture in a shallow family can be exhaustively searched in polynomial time.

Theorem 2 Loading shallow architectures is NP-complete even if the SCI
graph is a regular rectangular or hezagonal grid. O
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Definition The tree-width of a graph is defined by [RS86] in the following
way: Let G be a graph with vertex set V(G). A tree-decomposition of G
is a family {X; : ¢ € I} of subsets of V(G), together with a tree T' with
V(T) = I, which have the following properties:

e U{X;:1€I}=V(G)
e Every edge of G has both its ends in some X;(i € I).
e Fori,7,k € I, if 5 lies on the path in T from 7 to 5 then X; N X} C X;.

The width of a tree-decomposition is max{|X;| — 1: ¢ € I'}. The tree-width
of G is the minimum width over all possible tree-decompositions.

Graphs with tree-width < k are also said to be embeddable in partial
k-trees. This alternative (and earlier) definition appears in [ACP84|. The
tree-width of a graph is never greater than its bandwidth.

Theorem 3 Loading shallow architectures whose SCI graphs are of limited
tree-width can be accomplished in polynomial time, provided that a tree-
decomposition is given that ezhibits the required width. 0

The theorem holds when the word ‘limited’ means O(log n) where n is the
size of the architecture (not the size of the task).

Theorem 4 For shallow architectures where the tree-width of their SCI
graphs has a growth function of G(n) = n®1) = ne loading is NP-complete.

Proofs to theorems 3 and 4 appear in [Jud88a).

5 Conclusions

The problem of simply remembering a list of stimulus/response pairs is
trivial on a Turing machine or a random access machine, but it has been
shown to be very difficult when required to be put into a specific immutable
circuit form. This has immediate ramifications for learning in connectionist
networks, which typically depend on a form of on-line training by seeing
example stimulus/response pairs. A theory of constraints on the loading
problem leading to tractable subcases will translate into network design
constraints and /or a description of what tasks they can learn.
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