il
i
!
:

|
g
i
?
!

TEXTS IN COMPUTER SCIENCE

Software
Reliability
Metho

Doron

Doron A. Peled

SOFTWARE RELIABILITY METHODS

Foreword by Edmund M. Clarke

With 50 Illustrations

ATTRRAmNmr

E200201401

PIZEN
®);) Springer

Doron A. Peled

Computing Sciences

Bell Labs/Lucent Technologies
Murray Hill, NJ 07974, USA
doron@research.bell-labs.com

Series Editors

David Gries Fred B. Schneider
Department of Computer Science Department of Computer Science
415 Boyd Graduate Studies Research Upson Hall
Center Cornell University
The University of Georgia Ithaca, NY 14853-7501, USA

Athens, GA 30602-7404, USA

Library of Congress Cataloging-in-Publication Data
Peled, Doron, 1962-
Software reliability methods / Doron A. Peled.
p. cm. — (Texts in computer science)
Includes bibliographical references and index.
ISBN 0-387-95106-7 (alk. paper)
1. Computer software—Reliability. I. Title. II. Series.
QA76.76.R44 P317 2001
005—dc21 2001018395

Printed on acid-free paper.

© 2001 Lucent Technologies. All Rights Reserved.

All rights reserved. This work may not be translated or copied in whole or in part without the writter
permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connectiol
with any form of information storage and retrieval, electronic adaptation, computer software, or b
similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if th
former are not especially identified, is not to be taken as a sign that such names, as understood b
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Allan Abrams; manufacturing supervised by Jerome Basma.
Photocomposed copy prepared from the author's IATEX files.

Printed and bound by Maple-Vail Book Manufacturing Group, York, PA.

Printed in the United States of America.

987654321

ISBN 0-387-95106-7 SPIN 10774651

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH

TEXTS IN COMPUTER SCIENCE

Editors
David Gries
Fred B. Schneider

Springer
New York
Berlin
Heidelberg
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

TEXTS IN COMPUTER SCIENCE

Alagar and Periyasamy, Specification of Software Systems

Apt and Olderog, Verification of Sequential and Concurrent
Programs, Second Edition

Back and von Wright, Refinement Calculus

Beidler, Data Structures and Algorithms

Bergin, Data Structure Programming

Brooks, C Programming: The Essentials for Engineers and Scientists
Brooks, Problem Solving with Fortran 90

Dandamudi, Introduction to Assembly Language Programming

Fitting, First-Order Logic and Automated Theorem Proving,
Second Edition

Grillmeyer, Exploring Computer Science with Scheme

Homer and Selman, Computability and Complexity Theory

Immerman, Descriptive Complexity

Jalote, An Integrated Approach to Software Engineering, Second Edition
Kizza, Ethical and Social Issues in the Information Age

Kozen, Automata and Computability

Li and Vitanyi, An Introduction to Kolmogorov Complexity
and Its Applications, Second Edition

(continued afier index)

Foreword by Edmund M. Clarke

It is a great pleasure for me to write the foreword for Doron Peled’s new
book on software reliability methods. When I first opened the book, I was
immediately impressed by the breadth of its coverage. It covers

specification and modeling,
deductive verification,

model checking,

process algebra,

program testing, and

state and message sequence charts.

In addition to describing the individual methods in considerable depth, it
also discusses when each method is appropriate and the tradeoffs that are
necessary in selecting among them. The different techniques are illustrated
by many challenging exercises that can be used in conjunction with state of
the art tools. It even tells where to access the tools on the web! I do not know
of any other book that covers the same topics with such depth.

The book also describes the process of applying formal methods, starting
with modeling and specification, then selecting an appropriate verification
technique, and, finally, testing the resulting program. This knowledge is es-
sential in practice, but is rarely covered in software engineering texts. Most
books focus on a particular technique like program testing and do not cover
other validation techniques or how several techniques can be used in combi-
nation. Because Doron has made significant contributions to the development
of many of the validation techniques described in the book, his insights are
particularly important on this critical issue.

The book is appropriate for a wide spectrum of people involved in the
development of software. It is particularly appropriate for an upper level
undergraduate level course on software reliability or a master’s degree course
in software engineering. In fact, it is sufficiently well annotated with pointers
to other more advanced papers that it can be used as a reference source
for software engineers engaged in code validation or by researchers in formal
methods.

Having just completed a book on model checking with Doron, I am im-
mensely impressed with both his talent as a computer scientist and his skill
as a writer. I am sure that the present book will be an enormous success.
I recommend it with great enthusiasm for anyone who is interested in the
problem of software reliability.

Preface

Many books focus on increasing the quality of software through the use of
formal methods. However, most books embrace one particular method, and
present it as the suggested solution for the software reliability problem. This
book presents a wider picture of formal methods, through a collection of
notations and techniques. It compares them, and discusses their advantages
and disadvantages.

One of the main challenges of formal methods is in transferring the tech-
nology developed by researchers to the software development community. Re-
cently, we seem to be starting to have a better understanding of the important
ingredients of formal methods tools. This manifests itself in the growing ac-
ceptance of such tools in the software and hardware development industry.
Ideally, formal methods need to be intuitive to use (preferably using graphi-
cal interfaces), do not impose on the user an extensive learning period, and
incur only small overhead to the development process. Formal methods are
much more acceptable today than ten or twenty years ago, in particular in
the hardware industry. Yet there is still a lively contention between different
approaches.

The focus of this book is on describing the main principles of formal meth-
ods, through a collection of techniques. At the time of writing this book,
there are already many advanced techniques that are not covered here. Tech-
niques that deal with real-time and hybrid systems, advanced specification
formalisms, and special data structures such as binary decision diagrams,
were not included. The exclusion of specific material does not mean that the
methods presented here are superior to the ones omitted. Nevertheless, the
algorithms and methods described here are being used in state-of-the-art soft-
ware reliability tools. The selection is merely intended to present the subject
of formal methods in a way that seems deductive. However, it is impossible
to refrain from preferring to include subjects that are closer to one’s own re-
search The main themes used throughout this book are logic and automata
theory. The interested reader can find details of advanced approaches in other
books and research papers listed at the end of relevant chapters.

Studying formal methods is incomplete without hands-on experience with
some tools. This book includes various exercises and projects, which may be
performed using software reliability tools. There are several running examples

b'e Preface

that are used in different chapters. An effective way to learn formal methods
and their strengths and weaknesses is to follow these examples throughout
the different chapters in which they occur. In some cases, a later chapter
further elaborates on a running example that was presented as an exercise
in a previous chapter. This also serves the purpose of helping readers check
their solutions to previous exercises (instead of providing an explicit solution).
The readers are encouraged to check if some of the additional intuition gained
about the running example may help in improving their solutions to previous
exercises.

Most exercises and projects presented here can be performed using a
choice of tools. While some of the software reliability tools are subject to
nontrivial license fees, many of them can be used free of charge for nonprofit
purposes. This usually involves downloading the tool from its worldwideweb
page and installing it according to the instructions provided there. At the
end of relevant chapters, some tools and their corresponding web pages are
listed. Notice that even tools that can be used without acquiring a license
often require an agreement letter to be sent to the developers of the tool,
committing to their terms of use. In many cases, such terms restrict the use
of the tool for academic purposes only, and maintain no responsibility for
damage that may be incurred by using it. Since web pages and web addresses
tend to change, and since new tools are constantly being constructed, replac-
ing existing ones, one cannot guarantee that the provided web information
will remain up to date for long. Moreover, it is not guaranteed that the tools
will work under any particular environment.

Different communities have different interests in formal methods. It is of
course impossible to present a book that will appeal equally to managers,
software developers, quality assurance teams and researchers alike. Never-
theless, I tried to include material that would be interesting to members of
each one of these groups. Consequently, the reader may want to skip sections
that may seem too theoretical, or too technical. It should be pointed out that
the focus of this book is mainly on techniques rather than on methodology.

Some of the formal methods presented in this book are described together
with the corresponding algorithm. Understanding the algorithms is usually
not crucial for using the methods, but may give a deeper perspective on how
they work. Most of the mathematical proofs involving the methods described
were omitted. In some cases, proof sketches are included, to add more intu-
ition.

The author would like to thank the following people for enlightening dis-
cussions and comments related to this book: Nina Amla, Christel Baier, David
Basin, Shai Ben-David, Roderick Bloem, Glenn Bruns, Ed Clarke, Dennis
Dams, Xiaoqun Du, Kousha Etessami, Amy Felty, Elsa Gunter, Doug Howe,
Orna Kupferman, Bart Knaack, Bob Kurshan, Bengt Jonsson, Leonid Libkin,
Anca Muscholl, Kedar Namjoshi, Wojciech Penczek, Kavita Ravi, Natara-
jan Shankar, Natasha Sharygina, Marian Srenby, Richard Tefler, Wolfgang

Preface xi

Thomas, Moshe Vardi, Igor Walukiewicz, Thomas Wilke, Mihalis Yannakakis
and Lenore Zuck. Indeed, one of the great benefits of writing such a book
is the opportunity to further learn from the suggestions and comments of
practitioners and experts of the particular subject.

Quoting from Lewis Carroll’s adventure books is hardly original. How-
ever, it is little known that Charles Lutwidge Dodgson, who wrote under the
pen name Lewis Carroll, was a mathematician interested in the visual repre-
sentation of logic. His ‘biliteral’ and ‘triliteral’ diagrams are predecessors of
Karnaugh maps, representing logic in a way that can be easily taught and
understood, a recent trend in many formal methods.

Doron Peled, March 2001, Murray Hill, NJ

Contents

1. Introduction...........cc.iiiiininiiniiiiienrnasetarannnns 1
1.1 Formal Methods.cvoveevuncrnrissmosashasensssnssss 2
1.2 Developing and Acquiring Formal Methods 5
1.3 Using Formal Methodst 7
1.4 Applying Formal Methods ..., 9
1.5 Overviewofthe Book ...t 11
2. Preliminariescccovieiuiiiiiiiientiioncecsieracnans 13
D1 St INOEREIOIL 1 55t 550w e et 1 o0 9 5 o 6 el IR FID S 13
2.2 Strings and Languages «:...c.cseosonsssnensnmssasssanas 15
0.3 GLaPhB sss mais s smsis 55,500 w5888 8 Sa i v waseds w3 w1 # 16
2.4 Computational Complexity and Computability 20
9.5 Further Readitig. csimsnsinscusms oy imeansony s 27
3. Logic and Theorem Provingo 29
3.1 TFirst Order LiogiGi «os soms s owne 56 a5 9 oie vmmmn s samins aied 29
B9 TBTIIS 5 o onmomme 1 85 0 R 8 R B s e e e a5 T O B 30
3.3 Pirst Order Formulas ..::sss: mivssnivwsnssns eramss s mme 33
3.4 Propositional Logic ... 39
3.5 Proving First Order Logic Formulas.................. 39
3.6 Properties of Proof Systems.cooiiiiiiiiniaieenn 43
3.7 Proving Propositional Logic Properties 46
3.8 A Practical Proof System........covvriiiieinennenanaenss 47
39 Example Proofs :.owems smamess osaie s s wwbsomims dasi 50
3.10 Machine Assisted Proofs: s:sssssemses vmsmmsms smswmess v 59
3.11 Mechanized Theorem Provers, 61
3,12 PUTEHEr REAAID s « o v sivec e mm s mim s s imis s ionm s w5 aibd #0858 61
4. Modeling Software Systems 63
4.1 Sequential, Concurrent and Reactive Systems 64
D O TABEEL o cor o oo o i i e o e & 90066 Y8 00,5 8 BN 10 8 B9 . 0 67
4.3 STAtE SPACES v ore it o5t i1 10 oo o008 05 65 50 5 908 900 £ 50050 915 18645 0 0% 19 8 68
44 Transition SYStEIME : i c i v memonosms s smessssesmmsesms 71

4.5 QGranularity of Transitions eeeswessiseswnsss s ssyans 75

xiv

Contents
4.6 Examples of Modeling Programs 7
4.7 Nondeterministic Transitions............... 85
4.8 Assigning Propositional Variables to States 86
4.9 Combining State Spacest 88
4.10 The Linear Viewttt 90
4.11 The Branching View 91
4.12 Failness . .o .o ottt e 92
4.13 The Partial Order View, 98
4.14 Modeling Formalismsoiiiiiiniinnninn... 107
4.15 A Modeling Projétt s sunimimmsnsnmimsansms smemaim: saiauss 109
4.16 Further Reading.......... i, 110
Formal Specification 113
5.1 Properties of Specification Formalisms 114
5.2 Linear Temporal Logic oo, 116
9.3 ANIOMAIZING LTI s s aosm e wiam o e s o simsdss s o6 5mmsme oo sms 121
5.4 Examples of LTL Specification 123
5.5 Automata on Infinite Words 127
5.6 Specification using Biichi-automata 129
5.7 Deterministic Blichi Automata 132
5.8 Alternative Specification Formalisms 133
5.9 Complicated Specifications 136
5.10 Completeness of Specification 136
5.11 Further Reading.................. 138
Automatic Verification.............. 139
6.1 State Space Search 140
6.2 Representing States.............. 143
6.3 The Automata Framework............................... 143
6.4 Combining Biichi Automata 145
6.5 Complementing a Biichi Automaton 151
6.6 Checking Emptiness, 152
6.7 A Model Checking Example 154
6.8 Translating LTL into Automata 156
6.9 The Complexity of Model Checking 164
6.10 Representing Fairnesscoiiinnnn.. .. 169
6.11 Checking the LTL Specifications.......................... 170
6.12 Safety Propertiesouuuiuiannn .. 171
6.13 The State Space Explosion Problem 172
6.14 Advantages of Model Checking 174
6.15 Weaknesses of Model Checking 174
6.16 Selecting Automatic Verification Tools 175
6.17 Model Checking Projectsc.ccouuiiiiii. ... 175
6.18 Model Checking Tools......................cciiiiiiii.. 176

6.19 Further Reading............. 177

Contents Xv

Deductive Software Verification........................... 179
7.1 Verification of Flow Chart Programs 180
7.2 Verification with Array Variables 187
7.3 Total Correctness.ouuuuueiiineie e, 190
7.4 Axiomatic Program Verification 195
7.5 Verification of Concurrent Programs 202
7.6 Advantages of Deductive Verification...................... 207
7.7 Weaknesses of Deductive verification 208
7.8 Soundness and Completeness of Proof Systems 210
7.9 Compositionality 212
7.10 Deductive Verification Tools 213
7.1l BUFEher REAdINE : ws vmsims susmesmssms s momeoms omemmems ame 213
Process Algebra and Equivalences 215
8.1 Process Algebras, 217
8.2 A Calculus of Communicating Systems 218
8.3 An Example: Dekker’s Algorithm 225
8.4 Modeling Issues i 229
8.5 Equivalences between Agents 230

8.5.1 Trace equivalence................................. 231

8.5.2 Failure equivalence 232

8.5.3 Simulation Equivalence 233

8.5.4 Bisimulation and Weak Bisimulation equivalence 235
8.6 A Hierarchy of Equivalence Relations 237
8.7 Studying Concurrency using Process Algebra 238
8.8 Calculating Bisimulation Equivalence 242
B LOTOS s isise 5555 55555 55 0umaram e enmsom i wosie = 150515 05 550546 31 8 245
8.10 Process Algebra Tools............... ..., .. 247
8.11 Further Reading.............. 247
Software Testing 249
9.1 Inspections and Walkthroughs 251
9.2 Control Flow Coverage Criteria 253
9.3 Dataflow Coverage Criteria 259
9.4 Propagating path conditions 261
9.5 Equivalence Partition 267
9.6 Preparing the Code for Testing........................... 267
9.7 Checking the Test Suite 269
9.8 Compositionality 270
9.9 Black Box Testingo i, 272
9.10 Probabilistic Testingcooouiiooi . 275
9.11 Advantages of Testing..................c.ooue oo .. 276
9.12 Disadvantages of Testing 277
9.13 Testing Tools oo 278

xvi

10.

11.

12.

Contents
Combining Formal Methodso 279
10.1 AbStractionooviriin i 279
10.2 Combining Testing and Model Checking 286
10.2.1 Direct Cheeking : s s s s ww s s svew s esmems oo omewsss 286
10.2:2 Black Box Systems: s cesssevsmasas snsmosswesenn e 287
10.2.3 Combination Lock Automata 288
10.2.4 Black Box Deadlock Detection 289
10.2.5 Conformance Testingccoiiiieninnen .. 290
10.2.6 Checking the Reliability of Resets 294
10:2.7 Black Box CHECKITE = 5 i 0w soesisime s 6 00 o fsioimm wibiesns 294
10.3 The Cleanrcom Method : = :: s sus sousms eus@o06 s mmmwmme s 297
RVATT0 1 ETALY 5 (o) o TP PR g e PP PRI T P T T e o 299
11.1 Using Visualizations for Formal Methods 300
11.2 Message Sequence Charts..........oovveiiiiiiennnaniens 300
11.3 Visualizing Flowcharts and State Machines 305
11.4 Hierarchical State Graphs a: sswewesms smsmas i me s wm vweasns 308
11.5 Visualizing Program Text ::w:ss:esvpsssiaiimsmasmwsmssss 312
1160 POt INEES: v v oo i3 05 500 o 5 1950 836 08 50 S16050 565 00605 10 306060 6. 90 08 o 312
117 VISHaliZation: TOBLE! eis. e mem s wismed s s fi s » i) g0 585 @ 314
11.8 Further Reading..............coiiiiiiiiiii .. 316
CONCISTONS 5 5555 560 5550 5 9 15608 e 0 5 s s 0% 8 00 8 0 05 16 6 s o 6 0 317
TRETETEIICES v+ v o100 515 e 0 s i 08 5 e 81001 58 T8 321

List of Figures

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
5.4
9.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7

A directed Braph, wssmemassems swsmgvmss s ms S BoERE 08w 0n s $ 08 L7
An unfolding of the graph in Figure 2.1covvunnn. 19
A TOring MACKIIG 55 e a1t m smson ermasiibed i drverss semsio s 8156 68500 wwrs i 20
PHOOT BEEEE v v vt o ot g o ams s e g 1 50605 socsmuontor 15 6 & 55 5 0 51
Executing commutative transitions 0l 70
Executing noncommutative transitions 70
Some states of the Sieve of Eratosthenes for N =1and P=3.... 82
Dekker’s mutual exclusion solution 85
Propositional values for the states in Figure 4.3 87
Two local state spaces, and their asynchronous composition 90
The relation between executions and specification 91
A hierarchy of fairness criteria assumptions 97
A DaNKING SYSEEINY 5:5 i 56000 5 505 w0 w5 01510 i w0 mn 01k e 550 5 B0 5 1 250000 99
A partial order description of the bank 100
Processes interacting by message passing 104
A partial order execution of the program in Figure 4.11 105
WO INCEICAVITES) uowesw 3085 s b md »5rsi6 258 RH 5 58 510 500 B1AwS 506 110 106
A 10del Of & EPTINE w:wainimasnssmsmesmssmsms smisasms s5 15w 118
A Biichi automaton i 128
Two representations for a Biichi automaton 130
Mutual exclusion 132
A liveness Propertyoviiiriiineine it 132
An automaton accepting words where A holds finitely many times 132
Automaton for identifying words where A holds in even places ... 134
A DFS traversal of nodes with backward edges 142
Two automata to be intersected 147
Intermediate stage of intersection 147
The intersection of the automata in Figure 6.2 148
A traffic light model and the negation of a specification 155
The intersection of the automata in Figure 6.5 157
The translation algorithm 162

xviii

6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3

8:1

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

10.1
10,2
10.3
10.4
10.5
10.6
10.7

11.1
11.2
11.3

List of Figures

The IRitIal NOAE i vamssssmomesns st 255w s 550memenme omsms 163
Splitting the node in Figure 6.8 163
Splitting the right node in Figure 6.9 163
Generating a successor nodeoouuiiiiiiii... 164
The set Nodes_Set at termination 165
The automaton with the accepting nodes 166
Nodes in a flowchart 180
A flowchart program for integer division 185
A proof tree 200
Two simple systems 216
Repeatedly executing 3 from A 2 al|B.A oo 223
The graph for a.(B.(8]|0) +74) «@vrie 224
An automaton representing a binary variable ¢l 226
Agent PL ... 228
Agents a.(B+7) and a.B+a.(B+7) «erriiiii 233
Agents a.f.7.Nil + o.8.6.Nil and o.(8.y.Nil +8.8) 235
Agents a.f+aand a.8 235
Two agents for Exercise 8.5.1ouiiieneii .. 236
A hierarchy of equivalences 238
Agents Eand C ... 240
Process algebra queues 241
The state spaces for agents Aand B 243
Avpartof aflowchart 254
A hierarchy of coverage criteria 258
A hierarchy of dataflow coverage 261
A flowchart for the GCD program 265
A hierarchy of procedure calls 270
A combined approach of testing and model checking 273
A graphfor testing 274
A simple Markov Chain 276
A combined approach of verification and model checking 280
An n slot buffer and its abstraction 282
A 4 slot buffer of bits 283
A combination lock automaton 289
Two nonconforming automata 290
A combination lock from a state of a black box automaton 293
A system where checking the reliability of reset is impossible ... 295
A Message Sequence Chart 301
The ITU-120 textual representation of the MSC in Figure 11.1 .. 301

The partial order between the events in Figure 11.1 302

List of Figures xix

114 A HMSO Sraph simsonsms sosansmsanins soimninsanimases s s 304
11.5 A template and a matching scenario 305
11.6 Visualization of flowcharts 308
11.7 A simple hierarchical graph 309
118 UNHOTINERILS s svwmensmmems soemsaman e s o505 m s es ¢85 @06 65568 310
11.9 Concurrency within astateciiiiiiinne... 311
T100 A PEUYL INGE :sssms s 050555 0000 oraime s meiomsm e mn s smateme s s 313

1. Introduction

‘Where shall I begin, please your Majesty?’ he asked. ‘Begin at the
beginning,’ the King said, very gravely, ‘and go on till you come to
the end; then stop.’

Lewis Carroll, Alice’s Adventures in Wonderland

During late 1999, the world waited, with growing concern, for the change
of the calendar into the year 2000. The focus was on some potential damage
from online computers that control vital systems. This damage could occur
because of the mere change of the calendar year and the way years of the twen-
tieth century were traditionally represented in computer memory, using only
the least two significant digits from 00 to 99. This surprisingly small detail
made some people expect extreme damage. It could have affected electronic
systems driven by software, such as verifying traffic control, atomic missiles,
nuclear reactors, banking systems, pension plans, electricity and water sup-
ply. The US alone spent over 100 billion dollars on combating this, so called,
"Y2K-bug.” Just prior to that date change, some people had escaped into self
made shelters, while flashlights and bottled water were a popular demand.
Joint teams of the US and Russian military spent the night of December 31
1999 at the North American Aerospace Defense Command (NORAD). To-
gether they monitored the world’s skies, as a precaution against a possible
computer error that could cause an unruly launch of missiles. Midnight, De-
cember 31 1999 has passed into the new millenium with no significant events,
except for a few minor glitches.

Computer systems control many aspects of our lives. Telephone systems,
store checkout registers, ticket reservation systems, medical systems, financial
systems, are all highly computerized. Data communication between comput-
ers replaces, in most cases, the use of actual paper money transfer. Computers
are even responsible for many of the activities required for flying commercial
airplanes. Failure of computerized systems have already caused grave conse-
quences, including fatal accidents, shutting down of vital systems, and loss
of money.

The software development industry has grown over the last few decades
at an unprecedented pace. Hardware, and in particular memory costs, kept
decreasing. The internet has practically transformed the world into a big

