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Foreword by Edmund M. Clarke

It is a great pleasure for me to write the foreword for Doron Peled’s new
book on software reliability methods. When I first opened the book, I was
immediately impressed by the breadth of its coverage. It covers

specification and modeling,
deductive verification,

model checking,

process algebra,

program testing, and

state and message sequence charts.

In addition to describing the individual methods in considerable depth, it
also discusses when each method is appropriate and the tradeoffs that are
necessary in selecting among them. The different techniques are illustrated
by many challenging exercises that can be used in conjunction with state of
the art tools. It even tells where to access the tools on the web! I do not know
of any other book that covers the same topics with such depth.

The book also describes the process of applying formal methods, starting
with modeling and specification, then selecting an appropriate verification
technique, and, finally, testing the resulting program. This knowledge is es-
sential in practice, but is rarely covered in software engineering texts. Most
books focus on a particular technique like program testing and do not cover
other validation techniques or how several techniques can be used in combi-
nation. Because Doron has made significant contributions to the development
of many of the validation techniques described in the book, his insights are
particularly important on this critical issue.

The book is appropriate for a wide spectrum of people involved in the
development of software. It is particularly appropriate for an upper level
undergraduate level course on software reliability or a master’s degree course
in software engineering. In fact, it is sufficiently well annotated with pointers
to other more advanced papers that it can be used as a reference source
for software engineers engaged in code validation or by researchers in formal
methods.

Having just completed a book on model checking with Doron, I am im-
mensely impressed with both his talent as a computer scientist and his skill
as a writer. I am sure that the present book will be an enormous success.
I recommend it with great enthusiasm for anyone who is interested in the
problem of software reliability.



Preface

Many books focus on increasing the quality of software through the use of
formal methods. However, most books embrace one particular method, and
present it as the suggested solution for the software reliability problem. This
book presents a wider picture of formal methods, through a collection of
notations and techniques. It compares them, and discusses their advantages
and disadvantages.

One of the main challenges of formal methods is in transferring the tech-
nology developed by researchers to the software development community. Re-
cently, we seem to be starting to have a better understanding of the important
ingredients of formal methods tools. This manifests itself in the growing ac-
ceptance of such tools in the software and hardware development industry.
Ideally, formal methods need to be intuitive to use (preferably using graphi-
cal interfaces), do not impose on the user an extensive learning period, and
incur only small overhead to the development process. Formal methods are
much more acceptable today than ten or twenty years ago, in particular in
the hardware industry. Yet there is still a lively contention between different
approaches.

The focus of this book is on describing the main principles of formal meth-
ods, through a collection of techniques. At the time of writing this book,
there are already many advanced techniques that are not covered here. Tech-
niques that deal with real-time and hybrid systems, advanced specification
formalisms, and special data structures such as binary decision diagrams,
were not included. The exclusion of specific material does not mean that the
methods presented here are superior to the ones omitted. Nevertheless, the
algorithms and methods described here are being used in state-of-the-art soft-
ware reliability tools. The selection is merely intended to present the subject
of formal methods in a way that seems deductive. However, it is impossible
to refrain from preferring to include subjects that are closer to one’s own re-
search The main themes used throughout this book are logic and automata
theory. The interested reader can find details of advanced approaches in other
books and research papers listed at the end of relevant chapters.

Studying formal methods is incomplete without hands-on experience with
some tools. This book includes various exercises and projects, which may be
performed using software reliability tools. There are several running examples
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that are used in different chapters. An effective way to learn formal methods
and their strengths and weaknesses is to follow these examples throughout
the different chapters in which they occur. In some cases, a later chapter
further elaborates on a running example that was presented as an exercise
in a previous chapter. This also serves the purpose of helping readers check
their solutions to previous exercises (instead of providing an explicit solution).
The readers are encouraged to check if some of the additional intuition gained
about the running example may help in improving their solutions to previous
exercises.

Most exercises and projects presented here can be performed using a
choice of tools. While some of the software reliability tools are subject to
nontrivial license fees, many of them can be used free of charge for nonprofit
purposes. This usually involves downloading the tool from its worldwideweb
page and installing it according to the instructions provided there. At the
end of relevant chapters, some tools and their corresponding web pages are
listed. Notice that even tools that can be used without acquiring a license
often require an agreement letter to be sent to the developers of the tool,
committing to their terms of use. In many cases, such terms restrict the use
of the tool for academic purposes only, and maintain no responsibility for
damage that may be incurred by using it. Since web pages and web addresses
tend to change, and since new tools are constantly being constructed, replac-
ing existing ones, one cannot guarantee that the provided web information
will remain up to date for long. Moreover, it is not guaranteed that the tools
will work under any particular environment.

Different communities have different interests in formal methods. It is of
course impossible to present a book that will appeal equally to managers,
software developers, quality assurance teams and researchers alike. Never-
theless, I tried to include material that would be interesting to members of
each one of these groups. Consequently, the reader may want to skip sections
that may seem too theoretical, or too technical. It should be pointed out that
the focus of this book is mainly on techniques rather than on methodology.

Some of the formal methods presented in this book are described together
with the corresponding algorithm. Understanding the algorithms is usually
not crucial for using the methods, but may give a deeper perspective on how
they work. Most of the mathematical proofs involving the methods described
were omitted. In some cases, proof sketches are included, to add more intu-
ition.

The author would like to thank the following people for enlightening dis-
cussions and comments related to this book: Nina Amla, Christel Baier, David
Basin, Shai Ben-David, Roderick Bloem, Glenn Bruns, Ed Clarke, Dennis
Dams, Xiaoqun Du, Kousha Etessami, Amy Felty, Elsa Gunter, Doug Howe,
Orna Kupferman, Bart Knaack, Bob Kurshan, Bengt Jonsson, Leonid Libkin,
Anca Muscholl, Kedar Namjoshi, Wojciech Penczek, Kavita Ravi, Natara-
jan Shankar, Natasha Sharygina, Marian Srenby, Richard Tefler, Wolfgang
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Thomas, Moshe Vardi, Igor Walukiewicz, Thomas Wilke, Mihalis Yannakakis
and Lenore Zuck. Indeed, one of the great benefits of writing such a book
is the opportunity to further learn from the suggestions and comments of
practitioners and experts of the particular subject.

Quoting from Lewis Carroll’s adventure books is hardly original. How-
ever, it is little known that Charles Lutwidge Dodgson, who wrote under the
pen name Lewis Carroll, was a mathematician interested in the visual repre-
sentation of logic. His ‘biliteral’ and ‘triliteral’ diagrams are predecessors of
Karnaugh maps, representing logic in a way that can be easily taught and
understood, a recent trend in many formal methods.

Doron Peled, March 2001, Murray Hill, NJ
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1. Introduction

‘Where shall I begin, please your Majesty?’ he asked. ‘Begin at the
beginning,’ the King said, very gravely, ‘and go on till you come to
the end; then stop.’

Lewis Carroll, Alice’s Adventures in Wonderland

During late 1999, the world waited, with growing concern, for the change
of the calendar into the year 2000. The focus was on some potential damage
from online computers that control vital systems. This damage could occur
because of the mere change of the calendar year and the way years of the twen-
tieth century were traditionally represented in computer memory, using only
the least two significant digits from 00 to 99. This surprisingly small detail
made some people expect extreme damage. It could have affected electronic
systems driven by software, such as verifying traffic control, atomic missiles,
nuclear reactors, banking systems, pension plans, electricity and water sup-
ply. The US alone spent over 100 billion dollars on combating this, so called,
"Y2K-bug.” Just prior to that date change, some people had escaped into self
made shelters, while flashlights and bottled water were a popular demand.
Joint teams of the US and Russian military spent the night of December 31
1999 at the North American Aerospace Defense Command (NORAD). To-
gether they monitored the world’s skies, as a precaution against a possible
computer error that could cause an unruly launch of missiles. Midnight, De-
cember 31 1999 has passed into the new millenium with no significant events,
except for a few minor glitches.

Computer systems control many aspects of our lives. Telephone systems,
store checkout registers, ticket reservation systems, medical systems, financial
systems, are all highly computerized. Data communication between comput-
ers replaces, in most cases, the use of actual paper money transfer. Computers
are even responsible for many of the activities required for flying commercial
airplanes. Failure of computerized systems have already caused grave conse-
quences, including fatal accidents, shutting down of vital systems, and loss
of money.

The software development industry has grown over the last few decades
at an unprecedented pace. Hardware, and in particular memory costs, kept
decreasing. The internet has practically transformed the world into a big



