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EXTENSIONS AND APPLICATIONS OF THE
DE GIORGI-NASH RESULTS

BY
CHARLES B. MORREY, J=r.

1. Introduction. The results of De Giorgi [3] and Nash [14] which are
referred to in the title of this lecture are their a priori estimates for the

“Holder continuity of the solutions of equations of the form

Ly EZ—G (@®u ) = 0

" on some domain G. Here u g means du/dz?, x = (x1,-- -, z’), and repeated

Greek indices are summed from 1 to v, as will always be done in this paper,
and the af(x) are supposed to satisfy

(1.2) mA2 £ af(@)AAs £ MAZ (A2= 2 X), O0<m<s=M

a=1

for all z on @ and all \. They showed by completely unrelated methods ‘
that any solution of (1.1) satisfies a uniform Hélder condition on any compact
set F = G which depends only on F, G, m, M, and bounds for |u| on G in
the case of Nash and the Le norm of % on G in the case of De Giorgi. Since
the bounds and Holder conditions on » do not depend on any continuity
properties of the a8, the results carry over to cases where the a=# are merely
bounded and measurable, in which case the equations (1.1) must be written
in the integrated form

(1.3) L { a%u do =0, LeON®)

where C1(G) denotes all functions of class C! on G with compact support and

. the function % belongs to the space H}(D) for each bounded D with D < G;
- here { . . etc., denote of/ox", 22| oxcox®, ete. ; if { € HY(@), { , denotes its

strong derivative.
. Since the notation H1(D) does not seem to be standard, we identify these
spaces with those denoted by W)(D) by Browder and the Russians and
#,(D), by the writer (see [2; 8]); in the case p = 2, functions € Hj(D) if and
only if they are strongly differentiable in the sense of Friedrichs [4].

It is important to have such estimates in order to discuss nonlinear equa-
tions and it is especially important to be able to have the conclusion for the
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equation (1.3) when the a<# are merely bounded and measurable in order to
be able to conclude the differentiability of the solutions of minimum problems.

For instance, De Giorgi was able to show, using his results, that any function
minimizing an integral

(L4) I 6) = fcf(x,z,Vz)dx (Vz = (21,0, 2.)

among all functions z in HE(G) having the same boundary values in which f

.is of class O, (nth derivatives Holder continuous with exponent 0 < p<l)
'm 2 2, is also of class € provided that f satisfies the following conditions:

There exist numbers, m, M, and K such that

[, 2, p) = f(p), P = (P, -, D)
(1.5) m|p|? — K = f(p) = M|p|® + K,
m|A|? < Sraps(DP)Aads < M|A|2

for all p and A. The existence of such a minimizing function was proved in
1943 by the writer (see [9] where much more general existence theorems were
proved).

- The method of proof is as follows : First of all, it is straightforward to
show that if z minimizes I(z, @), then : ‘

(1.6) fG € ofy, + L)z = 0, L eCY®),

provided that f satisfies (1.5) or any of the conditions below ; in De Giorgi’s
case, of course, f, = 0. Next select D = < G (i.e., D compact and D < @)
and choose D’ with D « < D’ < < @. Since each fp_ € Ly(@), (1.6) holds

for all { € H}(@) and, of course, z€ H}(@) if I(z, @) is finite, on account of

- (L.8). So let { € Hiy(D'), extend it to be zero in G — D', and for small A,

define '
(1.7)  Lalx) = ALz — he,) — U)], aa(x) = A e(x + he,) — 2(x)]

where ¢, denotes the unit vector in the xv direction. If this {, is substituted
for { in (1.6) and if the obvious change of variables is made to get rid of terms
involving {(x — hke,), and if one uses the integral form of the theorem of the

.mean, one obtains

(1.9) [, L@ = o LeH(D)
where the a2 satisfy (1.2) uniformly in &, aff being given by

(L.9) asB(z) = f: Frad(1 _ OVele) + V2 + he,)ldt (8.0.).
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Now, equation (1.8) is just (1.3) where all we know is that the a3* are measur-
able and satisfy (1.2). Moreover, from theorems on the Lebesgue integral,
it follows that the Ly norms of the z;, on D’ are bounded and, in fact, that
l#» — 2 4|p — 0. But from the De Giorgi result, we conclude that the zp
are equi-Holder continuous on D and hence tend uniformly to their limits
2,, on D which are therefore Holder continuous. Once this is known, the

- higher differentiability results follow from previously known results (see

[11], for instance).

'The corresponding difference-quotient device was used in 1912 by Lich-
tenstein [6] to show that any C2 solution of a minimum problem (1.4) in
which v = 2 and f analytic was of class C? on interior domains and hence
analytic by Bernstein’s theorem [1]. 1In 1929, E. Hopf [5] was able to obtain -
the same conclusion by. assuming only that z € O} for some u, 0 < u < 1.
In 1938, the writer [7] obtained the same conclusion in case z is merely
Lipschitz; v = 2 in these two latter cases. All of these results assume that -
something is known a priori about z, but only in special cases had it been
shown previously that solutions z existed which had these properties. In
1943, the writer employed the spaces, now denoted by H}, to extend the
rather meager previous existence theory. These results applied to cases
where v was arbitrary and z could be a vector function ; some of these results °
were extended to more general integrals in [10]. For v = 2, the writer was
able to show that these solutions, known to exist, were also differentiable,
provided f satisfied the conditions (1.12) below with v = 2 and k = 1, but 2

. was allowed to be a vector function. In 1950, A. G. Sigalov [15] proved

corresponding results for integrals where f satisfies (1.11) below with any
kE>.1/2butystill =2. ‘ :
All of these results involved consideration of equations of the form

(1.10) L [¢ ,,(é“ﬂzﬁ;,; + 5% + ) + {(cu , + du + f)ldz = 0, (eCY®)

with rough coefficients, but the methods used were peculiar to the case
v = 2. The De Giorgi-Nash results, then, represented an important break-
through in this field. In 1959, the writer [12] was able to extend the De
Giorgi-Nash results to certain equations of the form (1.10). These results

_did not lead immediately to further differentiability theorems for minimum
* - problems buthave been a useful tool in the recent results on differentiability

obtained during this year by the writer and his student E. R. Buley which

Last fall (1959), Buley had obtained a priori bounds for the solutions z of
minimum problems in which f satisfies conditions (1.11) below with 1/2 < k
£ 1. In January (1960), J. Moser kindly communicated his simplification
of the proofs of the De Giorgi-Nash results [13]. This enabled Buley to
extend his a priori results to problems in which f satisfies either (1.11) or
(1.11") below for any k¥ > 1/2. With the aid of several lemmas proved by
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the writer, Buley could then show that any solution z of such a problem is in
fact differentiable provided k > 1; he was unable to carry through the
difference-quotient procedure when 1 /2 <k <1 The conditions on I
required by Buley are the following (f is assumed of class C” in all cases) :

mVk — K < f(z,2,p) £ MVE, . 0<m =M,

_ zz’a +f121¢zv + f2 +fz2xy] = Mlyzk—1! V=1+2+ lp|2,
(1.11) .
‘ 2. + f2] £ M, y%-2 (all (=, 2, p)),

ka~1|AI2 = fpapﬁ(x, 2, p)_)‘aAB = MV"_II)\IZ (&H A),
or the alternative conditions _
(r.1r)y - same as (1.11) except f = f(z,p), V =1 + | p|2.

The results of Buley and their proofs are sketched in §2. _
The writer was able to extend (essentially) the results of Buley to the cases
~ where 1/2 < k < 1 by considering a sequence of auxiliary problems in which
is considered a function zx which. minimizes I(z, @) among all z in the
appropriate space for which another integral J(z, @) < K. This method is
. considered in some generality and applied to these cases in §3. In §4, the
writer applies that method and some more refined estimates to extend Buley’s
differentiability results to cases where f satisfies the conditions

mVk — K < f(z, 2z, p) £ MVE, O<m=M,
U+ A+ f2) < MVE V=1+]|pf,
(1.12)
27, + fra t foa)® S M V1 (all (z, 2, p, X)),
myk—1|)\|z < frohads S MVE-1AJ2, k=2

For example, if the a*#(z, z) satisfy (1.2) for all (z, y, A) and

f(x! 2, p) = aa,s(x’ z)fl’apﬁ,

then f satisfies (1.12) with £ = 1 but not either (1.11) or {1.11'). But
J = V¥ satisfies either set of conditions with the appropriate definition of V. .
"We use the following notations and make the following additional con-
ventions: All integrals are Lebesgue integrals. All domains are bounded
and if G is a domain, 9G denotes its boundary. A domain G is of class C! if
and only if each point P of 2@ is in a neighborhood 4" which is the image
under a 1-1 map of class C! of a sphere B(xo, R) (center g, radius R) in
which P corresponds to zo and 4" N 8@ corresponds to the part of B(xo, R)
where 2 =z ; usually we take x, = 0. The classes C™(@), C™(G), Lip (G)
have their usual significance and Lips(@), for instance, denotes those Lip-
schitz functions with support (closed) in G. - The space H}(@) is the closure
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with respect’ to the norm in H(G) of the space C}(G). If ¢ is a vector, Vo
denotes its gradient and |p| its Euclidean length. If @ is a domam @,
denotes the set of points z such that B(z, p) = &. We use the notation

— for weak convergence. If S is a set [S| denotes its measure. We
shall denote any constant ¢ which depends only on the bounds m, M, K, M
k, and v by C'; it is not assumed that such constants are all the same. These
results will be presented in more detail in the Proceedings of the International
Conference on Partial Differential Equations and Continuum Mechanics held
in Madison, Wisconsin, in June 1960.

2. The results of Buley. We shall treat only the case (1.11) and shall
assume v > 2; the modifications necessary to handle the cases (1.11’) and/
orv = 2 will be clear. On account of (1. 11), it is clearly sufficient to restrict
ourselves to functions z € H};(@). So we suppose that z* € H k(G) and let
z be a function in H}(G) such that z — z* € H}; o(G) and z minimizes I
among all such functions. We indicate how to prove that z is differentiable
on domains D < < @G.

Fimst. ~ (1.6) holds for all ¢ € HY, o(@). This is easily seen by approximat-
ing in H (@) by £ eCH{@A) and notmg from (1.11) that the f,, and f, e L,(G)
for r = 2k/(2k — 1).

Next, we apply the difference-quotient procedure described in the intro-
duction to obain the equation A

@.1) [ AL os + Vs + PIeR) + Ubizn + ot + PAYE = O
Ce BLnD), = 1J2,

where A, and the other coefficients are given by (a.e.)

‘Ah(x) = fol {1 + [2(z) + tA2]2 + |p(=) + tAp|2}dt,
Az = z(x + he,) — z(z), ete.,

1 : .

A0 = fo fpapﬂ[a: + the,, 2(x) + tAz, p(x) + tApldt, p(x) = Vz(z),

(2.2) ‘
Aby

1 1
f Spalsameldt, A,Pley = f Jo I samelds,

Py(x)

max 1 4+ [z(x) + tAz]2 + | p( x) + tApI2
0sts1

and the other coefficients are defined correspond.ingly We note that the
coefficients ‘az?, bg, c,, ef?, and f} are uniformly bounded and

Apx)=1ifk = 1,2, > p, in Lz];(pl),
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(2.3) Ap— V¥ 1lin Lk/(k_l)(.D')' (k > 1), Pp—TVin Lk(.D,'),
Azazﬂ s V“‘l)ﬂa"g = Y-&- 1)12fp¢p5 in sz/(k—l)(D’) (k> 1),

with corresponding convergence for the other coefficients. If % # 0 and -
small, we may set

(2.4) L = 92, 7 € Lip,(D’)
in (2.1). If this is done, we obtain the result that

- (2.5) fﬂ, 74|V "z < € fD O + |Vl Au(eE + Poda,
C =C(m, M, K, My, k)

by using the Schwarz inequality, the devicp 2 ab < ea? + 152, ete. Since
for each 5 € Llpc (D') the right side of (2.5) is umformly -bounded for all
small %, and since there is such an 17 = 1 on D, and since Ax(x) = 1, we see
that z, — p, in H}(D), Aja3’z, ; — something which must be O ”’%“"p
in Ly(D), and for any { € H}, (D), we see that { .Af — V*-D2{ in L2(D)
Thus with the aid of Lemma 2.1 below, we conclude the followmg

SECOND. The functions p,, U = V¥2, and V*-12p e HY(D) and satisfy
the equations

(2.6) fD VEUL (aipy,5 + bepy + Voew) + Lbpy.a + opy + Vefy)lde = 0.

Moreover

27 f IVU|2dx < sz VE-1(|Vp|2 + |p|2)dz < co.
D D

LemMMma 2.1. Suppose F is of class C! for all (ul,---, uP), suppose each
u? € H)(G) for some X 2 1, suppose U = F’(u1 -+, uP), suppose U and the
Vo€ Lu(G) for some p 2 1, where ‘

(2.8) Vi) = 2 F u(z)u?(z), a=1,--,0.
p=1 :

Tﬁen- UeHYG) and U (x) = V,(x) (a.e.). The same conclusion holds if F
is convex if, in (2.8), we replace the F , by the coefficients of any supporting
plane to F at any point x where F does mot have a unique tangent plane at
[u(z), - -, uP(x)]

This is proved by choosing representatives @? of u? which are absolutely
continuous along almost all lines parallel to each coordinates axis (see [2])
and noting that U = F(il,- - -, @P) has the same property.

Next we show:

Tuirp. Suppose the function U = Vk/2 € Ly, (D’) for some D' © < G and
somer 2 1. Thenw = U” € HY(D) for each D < < D’ and
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(2.9) j |Vw|2dx < Crza—zf widxzif D < D], a > 0,
D D’

where C = O(m, M, K, M1, k,v).
If it were possible to substitute

(2.10) { = n2U% 2, n € Lipy(D’),
in equations (2.6), the Schwarz inequality and (2.7) would yield

(2.11) f 72U22|VU |2da < 03f (1% + |Vq|2)U?da,
D’ D’

where Cj3 is independent of . But this implies (2.9). Unfortunately, the
’s in (2.10) are not known to € H}, o(D’). So, for each L, we define U, as
‘the “sawed-off” function: Ur(x) = U(z) if U(x) < L and Uy(z) = L if
U(z) 2 L; then we define { by (2.10) with U replaced by U;. These { are
still not known to € H}, o(D’). However, these { are, for each L, in Hl,(D')
and also ${ € H};(D') with yV{ € Ly(D’), where we define

(2.12) $ = VE-V2e HY D).
To see that such  can be substituted in (2.6), we define
(2'13) A= = fpa, B = fz-

It follows easily from our second step that 4* and B € H(D’), that

(2.14) Ac, = V¥ Ya*p, ; + b°p, + V%),
B, = VE= 1 (b va + CPy + V),

and hence that y~'4= € H}(D') and y—'VA* € L,(D). Then, using (2.14) and
a series of lemmas proved by the writer (to appear in the Proceedings of the
Madison Conference of June 1960), we conclude that if { has compact support
in D’ with { € H}(D'), ${ € Hy(D’), and ¢V{ € Ly(D’), then we may substitute
{ in (2.6) to obtain '
[, €ty + 1B )ao = [ @.de, - 1, By ,

- [ @uds, -t at0ae =0, 4=,
since (1.6) holds. Making these substitutions leads to
(2.15) f RUL-A|VUP + (r — 1)|VU|2de

0
<0, [, [ + V210320,
b

Since the right side of (2.15) is bounded for all L, we may let L — oo to
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obtain (2.11) (in deriving (2.15), it is convenient to notice that VU = 0
almost everywhere on the set where UL(x) = L). '

FourtH. If fis of class Ct, witht 2 2 and 0 < p < 1 (C®, analytic), then
the solution z is of class C'(C®, analytic) on each domain D < < Q.

In order to prove this, it is sufficient to show that U is bounded on interior
domains D =« < . For then the p, satisfy (2.6) and the coefficients
Vk-1ge8, ete., are all bounded. Then it follows from the writer’s extension
[12] of the De Giorgi-Nash results that the p, are Hélder-continuous on such
domains. The higher differentiability follows from known results as men-
tioned in the introduection.
~ In order to show that U is bounded, we modify Moser’s procedure slightl>". .
We suppose that By = B(xo, 2R) < G, B, = B(xo, Rx) where R, =
R(1 + 2-n), and define

w, = U so that w, = w’_{, s = v/(v — 2).

Then, for each »n, we apply the Sobolev lemma (see [12]),
12
(2.186) {f wﬁ‘_ldx} < ()'()J~ [|[Vw,_1|*> + B 2w2_\Jde, Oy = Op(v),
B’l Bn
with the result (2.9) with D = By, D' = Bn_1,a = 2-*R, which yields

(2.17) f [([Vw,_1[? + Ry2w?_Jde < 20182n—2.4nR-2f
B?I

w?L— ldx:
Bn—l :

C1 being the C of (2.9); note that R, = R. If we let

W, = f widz,
Bﬂ

(2.16) and (2.17) lead to the recurrence relation
(2.18) W, £ KiKeWws_,, K, = 2?18_2R_2, K, = 4s%

From (2 18), we conclude that U is summable to any power on B(zo, R) and
that

|U@)|? £ lim W} = KgK§ U?dzx, x € B(zy, R),
n—r 0 By

= (1-2s1"1=y/2 B=1r24

3. Extension of the results of Buley to the case 1/2 < k < 1. We first
state an obvious theorem, which will aid in the interpretation of the results
of this section, and a convenient definition.

DeriNitioN. If fand 2z are such that fp, and f are summable over each

D c < @ and if 2 satisfies (1.6), we say that z is an extremal for the integral
I(z, G). '
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TaroreM 3.1. If f satisfies-the conditions (1.11') for some k > 1/2 or if f
satisfies (1.11) and is convex in (P,z), and 2* € Hy(G), there is a unique
extremal z for the integral 1(z, Q) such that z € Hy(G) and z — 2* € Hj, o(G).

For then I(z, G) is a convex functional.

It is clear that (1.6) holds for all { € Hj; o(G). And if we apply the
difference quotient procedure, we arrive again at (2.5); but this time, it is
not immediately evident that the right side of (2.5) is bounded for all small
h, although the result of replacing A4, by its limit V*-1, z; by p, and P» by ¥
is bounded. The trouble is that A» < 1 and 23 is not uniformly in Lz(D’).
- So we consider a sequence of problems of the type described in the introdue-
tion where the finiteness of the second integral guarantees that we may let
% — 0 in the difference-quotient procedure. We then study what happens
. as the second integral is allowed to be arbitrarily large.

We begin with some general remarks about such problems. The second
integral will be denoted by J(z, &), where

| (3.1) . J(z, @) = L F(z, z, Vz)do

where we shall assume for simplicity that F satisfies (1.11) with k replaced
by m.

" THEOREM 3.2. Suppose f satisfies (1.11) or (1.12) with some k (Zv[2 if
(1.12)). Let m’ denote the larger of k and m and suppose that z* € H}, (G)
and that J(z*, @) < L. Then there is a function z; € Hj,.(G) with z, — z* €
Hi, o(G) which minimizes I(z, @) among all such z for whick J(z, G) = L.
 If 21, 18 not an extremal for J, there is a unique number u = 0 such that 2L is an
extremal for the integral I(z, G) + pJ(z, G); so0

(3.2) [ Wl + wF) + T+ pFOE = 0 L€ Hiu(©),

Proor. The first statement is obvious from the lower semi-continuity of
both integrals (see [9] )with respect to weak convergence. If J(zL, G) < L
and { € Lip,(@), it is easily seen that J(zz + A{, G).< L for all sufficiently
small X; in this case, (3.2) holds with u = 0. If J(2z, G).= L and zy is not
an extremal, there is a {; such that

fc (£1,oFp, + L1Fz)dz = 1, 4L eLipc(G).
1t follows by fairly straightforward arguments that

L (€ ,afp, + Lf)dx = 0 whenever L (£ .oFp, + LF2)dx = 0,

¢ € Lip(G),
g0 that a number p exists. Since I(z, &) 2 I(2z, @) whenever J(z, G) = L,
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it follows easily that u 2 0. It is clear that u is unique if z; is not an ex-.
tremal for J.

TarOREM 3.3.  Assume the hypotheses and notation of Theorem 3.2 and also
that m > k, G is of class C'.and J has no extremal with z — 2* € H) mo(G) for
whkich J(z, G) > Ko. Then, if zx— 20 a8 K — oo through a sequence of
values, zo is @ minimizing function for I(z, @) with zy — z* € HL(G). There is
a sequence of K — oo such that Ku(K) — 0.

Proor. Suppose z§ minimizes I(z, @) among all z e H}(G) such that
z — 2% € Hy; o(@). Then, from our hypotheses, it follows that z¥is the strong
limit in H}(Q) of functions in H}, (@) and I is continuous with respect to
strong convergence. The first statement follows easily. To prove the
second, we define

p(K) = I(zx, G).

Then, clearly, ¢ is nonincreasing. Next if K > K,, we have
oK + AK) < I(zg + M1,@) where AK = J(zx + M1, @) — J(zk, Q)

for all Anear 0. Since AK/A — 1as A — 0, we see that o'(K) = —u(K) a.e.

Hence u(K) is summable for K 2 K; > Kg and the result follows.
We now apply these results to extend Buley’s results as indicated :

First. We suppose that f satisfies (1.11) with 1/2 < k < 1, we de_ﬁne
F=V2V=1+2+ |p|? we assume z*c H}G) and is the unique
(Theorem 3.1) extremal for J with those boundary values, Ko = J(z*, G), and
G is of class C'. Then, for each K, the functions pg,, Ugx = V¥, iy =
VE-02 and i xp g, € HYD) for each D = < G with

(3.3) f (hx + Vi) Vpk|®de = 2Ca™Kun(K) + Oa‘zf Vide,

D< D, D <cg
To prove this, we apply the difference quotlent procedure to equation
(‘5 2) to obtain
(3-4) J (€ Jp2n. + ANz 5 + bz, + G PH] + LANbZ .+ Ci2n + [})}dz =0,
Py
; E H%O(D’)’ r = I"’(K)y Zp = Zgps ete.

and the coefficients are given by their formulas in (2.2) with z replaced by
2g. This time, the 4, are bounded and

AP — VE1a®, Ay VA, Ao VATl (a-e.),
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(3.5) Ahe'in% = J;) fpaz'l[x + thev:' : ]dt — VE~%~ in Lr(D’)s

AxftP§— V¥=9fr in L(D’), r = 2k[/(2k — 1) > 2, q = 1/2.
Setting { = 9%, and proceedmg as before leads to

(3.6) fD (u + A,,)le,,Izd:c < Ca2 J;)' (e + A43)(z + Pp)dx.

For each fixed K, the right side is bounded and tends to a limit and so we
may conclude as before that the pg, € HY(D) and z, — py, in HYD) and we
may let A — 01in (3.6) and sum on y to obtain (3.3) and the other conclusions,
remembering the definition of J,

SrcoND. For a subsequence of K — o0, Ku(K)—>0 and zx —zg in
Hg(@), 2, being a minimizing function for I with z, — 2* € Hy. o(G), and on
each domain D < < @, gg — o, Up— Uy, $xpgy — $opoy, in HYD),
Pry — Po, " HE(D), and (3.3) holds in the limit.

The first statements follow from Theorems 3.2 ‘'and 3.3. Then, since
Ku(K)— 0 and Vi — Vo in Lax(@), we may let K — oo on the right in
(3.3). From (3.3), we conclude that the H. 1(D) norms of iz, Uy, and ¢ pg,
are uniformly bounded. Also

prxwdx: fD Vi V 54| Vpg|%de

< ( L pi x)l_k-( fD Vfg-l]vpx]zczx)k h .= k(1 — k).

Accordingly the results follow.

‘THIRD. Suppose z* € Hy(G) and f satisfies the hypotheses (1.11) with
1/2 < k < 1, G being any bounded domain. Then there is a minimizing
function for I(z, G) with z — 2*€ Hy;o(G) which has the differentiability
properties stated in §2.

To prove this, we let {G's} be an expa.ndmg sequence of domains of class C'
having union ‘G and let 2o be a minimizing function for I(z, G) with zo — 2*
eHzL ol@). On each G,, we approximate strongly in H3;(@,) by functions

2 € o (G,), and for each n and p, we let z,, = lim Zapx 88 in the second part.
Each Znp 18 minimizing for I(z, @,) with z,, — 2,, € H}, ((G,) and satisfies
the interior boundedness conditions. Thus a subsequence of znp — 25 in
H}(G,) where 2, — 2, € Hj; (@,) and 2, is minimizing. If, for each n, we
let Z, = z,0n G’ and zyon G - G, then Z, — z* € Hy; (@) and each Z, is
minimizing. Thus a subsequence — z in H%(G), z —z*e Hyo(G) and z is
minimizing and the limiting bound (3.3) holds for 2, The remainder of the
development in §2 now goes through except that this time ¢ = V(1-%/2,
YA yB, A*, Band ¢ € H}( D), so that the former {’s can be substituted in
(2.6) as before.
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4. Extension to the integrands f satisfying (1.12) with & > v/2. The case
k = v/2 can be treated by first showing that a minimizing funection in this
case satisfies a “ Dirichlet growth condition

o(r) = [pla) + Ka*l(r[a)~, p>00=rcsa,

2/v
: (p(T) = [f Vvlzdx] , B(xo, r) < .
B{zy,n )

This is omitted here but will appear in the Madison Proceedings.-

If one attempts to carry through the procedure of §2, one finds that the
equations (2.1) and (2.6) must be altered by replacing b, ¢,, 5% and ¢ by
Pib;, Pyey, V°, and Ve, respectively, if the bg, ¢ 0% and ¢ are to be bounded.
The argument in the proof of the second part would require that V¥+1 be
summable. In order to carry through the difference quotient procedure, we
must use the device of the preceding section and.in order to handle the
limiting equations, we need the following lemma,:

LemMa 4.1. Suppose w € Lo(B,) (B, = B(w,, 1)), we HYB,) for 0 < r <
b, H € L,(B,) and satisfies - o

2/v
(4.1) (f H"d:c) =Cirv, 0Zr=<bpu>0Hx = 0.
_ B,
Suppose w satisfies the condition

(4.2) f V|’ < Car? f Hwtdz + Cyria—? f whde
B' Br+u .

B,

rta

0O<asr, r+asgh >1

) L J
. It is assumed that these conditions hold on any spheres B(xo, b) and B(xe, r + a)
< G. Then there is a constant C4, depending only on p, v, C1, Ce, Cs and an
upper bound for a, such that

| f |Vw|2dx = 047-"a—2f widz, O<asr, r+ashb,
B, v

r+a

A=2+4 4ul, B(xe,r + a) < Q.

ProoF. Let us assume first that B(z,, R) < @ so that we H [ B(x,y, R)]
and there is a constant Cs such that

J' |Voo|2dz < Cs(R — #)-2 L wide, 0<r<R-
B, r ’

From the Sobolev lemma, used in (2;16), we conclude that

1/8
r

IA

‘ Co(v) fﬂ (|[Vw|2 + r2w2)dx (s = v/(v — 2))
(4.3) -

A

Co(Cs + 1)(R — ) f wdz, i B2 < 7 < R.
. B’



