MICROPOWER SERES - $16.95

DATA AND FILE
_ MANAC

for

i

John P. Grillo /J D. Robertson

Includes 48 programs designed to give the more advanced user
techniques for managing stored data.

MICROPOWER SERIES

DATA AND FILE

MANAGEMENT
for the

IBM Personal Computer

John P. Gnllo / J D Robertson

Wlhm M hsetts

uuuuuuuuuuuu

Consulting Editor:
Edouard J. Desautels
University of Wisconsin-Madison

Copyright © 1983 by Wm. C. Brown Company Publishers. All rights reserved
Library of Congress Catalog Card Number: 83-70098
ISBN 0-697-09987-3

2-09987-03

Third Printing, 1983
No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Printed in the United States of America

DATA AND FILE

MANAGEMENT
for the

IBM Personal Computer

To Donald and Nicklaus

Introduction

What is a data structure? How can the understanding of a search
technique help you to write a better genealogy program? What in the
world are stacks, queues, deques, and trees? Do you lose the contents
of a file if you invert it?

There is a reason why programmers ask these questions. The
questions stem from a lack of understanding of some fundamental
programming concepts that deal with data. Most programmers rely on a
background of vendor manuals and perhaps one or two formal courses
in BASIC. They feel confident in their ability to deal with lists, arrays,
subscripts, and some sequential searches. But unfortunately this level of
programming expertise, this repertoire of techniques, is not enough to
be helpful in writing good, efficient software.

In the classroom and in the world of consulting, we are quick to
point out the crucial importance of writing usable programs, that is,
programs that benefit the user. We also emphasize that the programmer
is rarely the only user of a good program, because a good program is
by definition one that is used by many people. A good programmer
must take pains to write programs that are easy to use. A good program
has the following properties:

e It should be structured well, so that its author and all other
readers of the program feel confident in being able to change
parts of it — add, delete, or modify modules — without
adversely affecting the untouched portions.

e It should be documented well, so that its logic can be
understood easily.

e [t should be written to be interactive whenever this process can
benefit the user.

e It should use files if these media for storing information are
appropriate.

e It should make efficient use of the computer through the proper
use of algorithms that minimize sorting and searching times,
minimize disk accesses, avoid excessively large memory arrays,
and avoid inappropriate data storage techniques.

The first three of these properties are discussed thoroughly in the
book, Techniques of BASIC for the IBM Personal Computer. The last
two properties are the focus of this book.

In most colleges and universities there exists a course called Data
Structures. It is taught after two semesters of programming and its
intent is to refine the students’ technique and introduce the commonly
used procedures that have been developed over the years to make a
program run more efficiently. The course covers pretty much what this
book covers, and in pretty much the same order. After mastering these
techniques, these same students seem to be able to deal with masses of

ix

data, either in memory or on files, with considerable ease and success.
The Data Structures course, more than any other course in their formal
training, prepares them to writer user-oriented programs with direct
applicability in their future industrial exposure.

The popularity of the IBM Personal Computer is increasing
continually. As a result, the industry pundits predict it to become one
of the three or four top home computers of the mid-1980s. It is likely
that most individuals will purchase a small-scale IBM PC system, even
though their eventual configurations could include a wide range of
peripherals. The system we used for the programs included in this book
is such a modest system. It has 64K bytes of memory available to the
user, two 320K double density disk drives, and a monochrome display
unit. We also had available a Brother HR-1 letter quality printer, which
we used to produce all included listings. We used Version 1.10 of the
IBM Disk Operating system (DOS) and its accompanying Advanced
BASIC. We have felt unrestricted in our applications programming
using this configuration.

One of the advantages we have discovered in our diverse dealings
with microcomputer literature is the frequently available software that
accompanies books and magazines in the form of cassettes and
diskettes. Our publisher, Wm. C. Brown, has made available to our
readers on diskette all of the programs described and listed in this book.
You should strongly consider the purchase of the software on diskette,
if for no other reason than to save you the tedium of keying in the
programs. Of course, that latter procedure is frought with the hazards
of error generation through typographic slips.

In this book we have made a sincere effort to simplify and
demystify the subject of data structures. We call the book Data and File
Management because we are trying to make a point: The topic of data
structures is useful only as long as it relates to the practical aspects of
how to manage data. The programs we include as examples should serve
to show you how these techniques can be useful in many common
applications. We sincerely hope that some of these intrigue you enough
that you will adapt them in some novel fashion and that you have as
much fun using them as we had writing them.

Contents

Introduction ix

1 Pointers 1

Subscripts 1

Nim, G1A, Heuristic Programming 2
Monte Carlo Methods 7

Random Text 13

Random Message Selection 17
Normal Distribution of Values 22

2 Sorting 27

Sorting Categories 27
Brute Force Sorts 28
Exchange Sorts 30
Binary Sorts 34
Tree Sorts 39
Multikey Sorts 40
Summary 44
References 48

3 Strings 49

Word Processing 49
Random Word Selection 50
Pattern Matching 53

Text Encoding 57

Text Reordering 61

Text Analysis 64

4 Linear and Linked Lists 71

Stacks 71

Queues 73

Deques 76

Linked Lists 77

Singly Linked Lists 77

Doubly Linked Lists 79

Circularly Linked Lists 79

Circular Doubly Linked List Application 79

vii

viii

Sequential Access Files

Sequential Search Techniques 86
Sequential File Access 87

Group Totals 91

Sequential File Merging 95
Index Production 100

Direct Access Files

File Searching 112

Binary Search 112

Interpolation Search 115

Hash Address Processing 117
Sorting Large Files 120

Disk Sort 120

Detached Key Sort 123
Segmented Detached Key Sort 124
ISAM File Processing 127

ISAM Storage Areas 128

DOS Physical Characteristics 128
ISAM Structuring 129

ISAM Access 129

Overflow Area 130

ISAM Insertion 130

Trees

Binary Trees 134

Binary Sequence Search Tree 141
In-Memory, Single-Key BSST 141
In-Memory, Double-Key BSST 144
In-Memory, Multi-Key BSST 147
BSST on Disk 152

Tree and Circularly Linked List 154

Inverted Files

Secondary Keys 163

Record Structure 164
Record Contents 164

File Access Using Pointer Table 165
Main Program Driver 166
Deletion and Balancing 167
Record Insertion 167
Random Access 172

Sorted Order Display 176
Physical Record Display 184
Final Thoughts 188

Index 189

85

111

133

163

Pointers

Subscripts

BASIC has become the popular problem-solving language for
microcomputers for a wide variety of reasons, not the least of which is
its inherent simplicity. It is easy to learn and to use. Consider the long
list of high schools and colleges that teach BASIC as a way to introduce
the computer to novices.

One important reason for BASIC’s popularity is often overlooked:
The language is highly flexible. By this we mean that BASIC will allow
programming constructs that are difficult or impossible to manage in
another language. A case in point is an array’s subscript. In BASIC, the
only rule is that the subscript be a numeric expression, while in many
versions of FORTRAN, for example, the subscript form is limited to
but a few very simple variations.

The subscript is the programmer’s pointer into an array, and as such
must be capable of as much variation as possible.

The subscript as a pointer in its most elemental form is simply a
way to access a given array element. For example, consider this segment
of code:

100 DIM D(50)

110 P=17
120 V=4
130 D(P)=V

Nim, GIA,
and Heuristic
Programming

2

Chapter 1

The variable P assumes the role of pointer to the array D in line
130 when it is used as a subscript. The overall effect is to store the
value 4 into the 17th location of D.

Suppose this line were added:

140 D(D(P))=237.8

This time, the pointer to the array D is the variable D(P), which in
itself uses a pointer. P=17, as defined in line 110 above.
D(P)=D(17)=4, from lines 120 and 130. D(D(P))=D(4), so define D(4)
as 237.8. Thus the value 237.8 is stored in D(4). This form of
addressing an array is called indirect addressing, because the computer
determines the final destination by proceeding through an intermediate
location that points to the value to be transferred.

In order to complete this introduction to pointers, we should point
out that most versions of FORTRAN don’t allow subscripted variables
to have subscripted variables as subscripts. Try saying that ten times
fast!

The programs which we have selected to include in this chapter to
exemplify the use of pointers all have a common concern: Where do the
array pointers come from? You will discover that array pointers can be
selected from a pool, generated at random, or calculated. This differs
from the more common source of array pointers, such as a FOR-NEXT
loop index or a counter.

The first program, G1A, is an interesting variant of the game of Nim.
The two Nim players remove from one to three objects from a starting
set of 13 objects. The player who removes the last object loses. The
game can always be won by the second player if that player remembers
one rule: Always leave a pile with the number of objects left equal to 9,
5, or 1.

In the early days of computers, much discussion centered on how
to program these machines to assume the characteristics that would
make them seem intelligent. The area of interest, called Artificial
Intelligence, or Al, was born. One of the techniques for simulating
intelligence was given the name heuristic programming, or programming
with the intent to discover or reveal an underlying principle.

In 1965, H. D. Block in an article in American Scientist described
a machine that would ‘‘learn’’ to play the game of Nim with a winning
strategy. The machine, originally called G1, did a pretty fair job of
imitating the way we humans learn. At first, it would play in seemingly
random fashion. After many games it would give up the current game
as lost before the game was over. It was as if it had discovered the
futility of continuing that game. Then, many games later, it became
unbeatable. It had ‘‘learned’’ the way to win.

To speed up the learning process, Block altered G1 and created
GI1A. We present this machine to you now as a program. The program
sets up all possible moves for itself in four cups. Think of each cup
containing three slips of paper, marked 1, 2, and 3. As a game
proceeds, G1A ‘‘draws”’ its move from the appropriate cup at random.

Pointers

10
20
30
40
50

70

When the flow of the game determines that G1A has lost, the last
““draw’’ that G1A made before losing is marked with a — 1. From that
point on in the series of games, this move will not be made. Eventually,
all cups’ moves contain a — 1 except those that lead to wins, and those
will be the only plays G1A makes.

Part of the fun of this program is to trace G1A’s progressively
better play. We leave this as an exercise for the reader.

Some features of the program are worthy of special mention.

e All user inputs are programmed with the INKEY$ function.

'filename:

Study the portion of the program that asks for the user’s
initials. This section uses INKEYS$ to build an input string three
characters long without the use of the ENTER key.

The LOCATE instruction is used extensively to display the
game’s status as it changes.

Graphic characters are used to display the chips. Note that a
special effort is made to remove the chips randomly from the

pile.

The messages that G1A displays give it a personality. If GI1A
loses, it responds in modest lower case. If G1A wins, it
responds in an obnoxious and pretentious upper case.

"gla"

' purpose: To play the game of "NIM" heuristically

' author:

DEFINT A-Z
DIM CUP(4,3), CY(13), CX(13)
60 DIM PERM(6,3)

jdr & jpg 9/82

'6 permutations of 3 digits.
His win or Our win messages.

80 DIM H1$(6), H2$(6), 01$(13), 02$(13), 03$(13)

90

100 '
110 LOCATE 5,1: PRINT STRING$(80,1) 'smile

120 LOCATE 7,25: PRINT"NI M WITH G 1 A"
130 LOCATE 9,1: PRINT STRING$(80,1)

140 '
150 FOR I=1 TO 4

FOR J=1 TO 3: CUP(I,J)=J: NEXT J
170 NEXT I

160

RANDOMIZE: CLS

Flash the title screen.

Fill each set of 3 cups with digits 1,2,3.

Chapter 1 Pointers

3

180 ' Fill the PERM array with all permutations of 1,2,3.
19C FOR I=1 TO 6
200 FOR J=1 TO 3: READ PERM(I,J): NEXT J

210 NEXT I

220 ' Fill His wins messages with gracious pap.
230 FOR I=1 TO 6: READ H1$(I), H2$(I): NEXT I

240 ' Fill Our wins messages with scathing scorn.

250 FOR I=1 TO 13: READ 01$(I), 02$(I), 03$(I): NEXT I
260 LOCATE 12,1: PRINT STRING$(54,32): WHO$=" / "

270 '¥x Set up the player's name.
280 LOCATE 12,3: PRINT "enter your initials";: T$=INKEY$
290 IF T$="" THEN 270

300 WHO$=WHO$+T$: LOCATE 12,25: PRINT WHOS$

310 IF LEN(WHO$)<>6 THEN 270

320 GOSUB 5000: WHO$=RIGHT$(WHO$,3): CLS

330 '#* Set up the screen display.

340 LOCATE 7,10: PRINT "G1A"; ! The computer's name is "Gl1A".

350 LOCATE 9,10: PRINT WHO$; ' Print the player's name.

360 LOCATE 8,10: PRINT WIN; ! Print the number of player's losses.
370 LOCATE 10,10: PRINT LOSE; ' Print the number of player's wins.
380 GOSUB 1000 ! Blank out previous chips.

390 ¥ Position the chips.

400 LOCATE 7,6: PRINT " "; ' Reverse marker for player turn.
410 LOCATE 9,6: PRINT STRING$(3,4); ! Mark next player.

420 "% Get player's response.

430 LOCATE 15,10:PRINT "Take 1 to 3 chips";: T$=INKEY$
440 IF T$="" THEN 420
ELSE TAKE=VAL(T$): LOCATE 15,30: PRINT "/ ";T$: GOSUB 5000

450 IF TAKE<1 OR TAKE>3 OR TAKE>CHIPS

THEN GOSUB 6000: LOCATE 15,10: PRINT "improper move";: GOSUB 5000:

GOTO 420
460 GOSUB 2000
470 IF CHIPS<=0 THEN GOSUB 4000: GOTO 330
480 ' GlA's move
490 GOSUB 6000: LOCATE 9,6: PRINT " ";
500 LOCATE 7,6: PRINT STRING$(3,6);
510 ' A is the random permutation selector.
520 GOSUB 5000: A=INT(RND*6+1)
530 FOR I=1 TO 3
540 ' Check the Ath. cup.
550 ' B is the remainder: CHIPS modulo 4.
560 K=PERM(A,I): B=CHIPS-4*INT(CHIPS/4)
570 IF B=0 THEN B=4
580 ' If this cup is not empty, check the others.
590 ' If it is empty, check others.
600 IF CUP(B,K)<=0 THEN NEXT I: CUP(BCUP,KCARD)=-1: HOW=1:
GOSUB 3000: GOTO 330

610 TAKE=CUP(B,K)

4 Chapter 1 Pointers

620 ' If this cup is not empty, check others.

630 IF TAKE>=CHIPS THEN CUP(B,K)=-1: HOW=2: GOSUB 3000: GOTO 330

640 ' Note proper grammatical display. 'chip' or 'chips'.

650 LOCATE 15,10: PRINT "G1lA takes"; TAKE; LEFT$("chips",4+INT(TAKE/2)),
660 GOSUB 5000: GOSUB 5000

670 BCUP=B: KCARD=K

680 GOSUB 2000: GOTO 390

1000 '¥#%xx Subroutine to set up chips.

1010 N=0O

1020 FOR I=-1 TO 1

1030 L=ABS(I): M=62+L

1040 FOR J=1 TO 5-L

1050 N=N+1: CX(N)=M+J+J: CY(N)=I+I+8

1060 LOCATE CY(N),CX(N): PRINT CHR$(3);

1070 NEXT J

1080 NEXT I

1090 CHIPS=13: LOCATE 7,51: PRINT "chips";: LOCATE 8,51: PRINT "left";
1100 LOCATE 9,51: PRINT CHIPS;: R=INT(RND*13+1): P=1+INT(RND¥11+1)
1110 RETURN

2000 '¥¥** Subroutine to remove 1 to 3 chips.
2010 FOR I=1 TO TAKE
2020 R=R+P

2030 IF R>13 THEN R=R-13
2040 LOCATE CY(R),CX(R): PRINT " ";

2050 NEXT I

2060 CHIPS=CHIPS-TAKE: LOCATE 9,51: PRINT CHIPS;
2070 RETURN

3000 '¥*x* Subroutine to print loss message.

3010 GOSUB 5000: GOSUB 5000: CLS

3020 A=INT(RND*6+1): LOCATE 7,1: PRINT STRING$(80,254)

3030 IF HOW=2 THEN LOCATE 9,25: PRINT "G1A "; H2$(A);" acknowledges defeat"
3040 IF HOW=1 THEN LOCATE 9,25: PRINT "GlA "; H1$(A); " concedes the game"
3050 LOCATE 12,1: PRINT STRING$(80,254): LOSE=LOSE+1

3060 GOSUB 5000: GOSUB 5000: GOSUB 5000: CLS

3070 RETURN

4000 '¥¥*% Subroutine to print win by GIA.

4010 CLS: A=INT(RND*¥13+1): B=INT(RND*13+1): C=INT(RND*13+1)

4020 LOCATE 7,1: PRINT STRING$(80,254)

4030 LOCATE 9,15: PRINT " THE "; 01$(A); ™ G1A HAS ";

4040 PRINT 02$(B);™ THE ";03$(C);" ";WHO$

4050 LOCATE 11,1: PRINT STRING$(80,254)

4060 WIN=WIN+1

4070 GOSUB 5000: GOSUB 5000: GOSUB 5000: CLS

4080 RETURN

5000 '¥¥#x¥% Subroutine to mark time.
5010 FOR I=1 TO 1500: NEXT I

5020 RETURN

Chapter 1 Pointers 5

6000
6010
6020
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
9999

33k %

Subroutine for blanking out.

LOCATE 15,1: PRINT STRING$(80,32);
RETURN

V3%

1
\

DATA
1

DATA
DATA
DATA
'

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
END

data statements

1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1

Data for GlA losses
cordially, respectfully, graciously, politely
affably, humbly, congenially, modestly
meekly, amicably, courteously, agreeably

Data for GlA wins
AWESOME, ANNIHILATED, PROSAIC, DREADED
EXTERMINATED, VAPID, PUISSANT, OBLITERATED, SLUGGISH
EMINENT, DEMOLISHED, DOLTISH, EXALTED, CONQUERED, OBTUSE
INTREPID, VANQUISHED, INFERIOR, SPLENDID, DEVASTATED
INSTPID, SAPIENT, EXTIRPATED, MAWKISH, ERUDITE, SUBJUGATED
BUNGLING, FORMIDABLE, CRUSHED, FLACCID, REDOUBTABLE
FLATTENED, INEPT, BRILLIANT, STOMPED, IGNORANT
MAGNIFICENT, DESTROYED, STUPID

Take 1 to 3 chips

6 Chapter 1 Pointers

61A takes 1 chip

Monte Carlo The next program, JOBSTEPS, demonstrates the use of random

Methods numbers as pointers to distribute an array’s contents. The function of
the program is to determine two sequences of hypothetical machining
operations. Each of the sequences is to be assigned to one of two
workers, with a sense of fairness requiring that the total time for the
machining operations each is assigned be as closely matched as possible.
There are as many as 25 various operations the two workers are
qualified to do, and each worker can be assigned any number of these
operations, as long as they both work the same total amount of time.
Their boss, the user of this program, inputs the amount of time
allotted, for example four hours. The program prints out two work
schedules, each containing machining operations, or tasks. No task on
one list appears on the other.

The technique of successively scrambling an array’s contents, then
checking to see if this order produces a better solution than a previous
one, is an example of the Monte Carlo Technique, named after the
famous casino at Monaco.

The solution of this problem is not trivial. To come up with such
a schedule with paper and pencil takes the better portion of an hour.
What the computer does in the program JOBSTEPS is to select at
random a set from 25 possible operations and sum their times. As soon
as the set exceeds the total time the boss dictates, for example four
hours, the total time is displayed. The boss can elect to have the
computer program select another set closer to the four hours, or accept
that one.

Chapter 1 Pointers 7

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

When the first worker’s schedule has been determined in this
manner, the program uses that amount of time as a target and
randomly selects from the unused tasks another schedule for the second
worker. The computer displays its first try, and the boss can accept or
reject it. A rejection forces the computer to come up with a better
schedule. Each try that is closer to the target (worker 1’s schedule) is
displayed for the boss to accept or reject. When the boss finally accepts
that run, both workers’ schedules are displayed, with each total time
shown.

'filename: "jobsteps"
' purpose: Monte Carlo selection of job operations
' author: jpg & jdr 9/82

DIM T$(25), T(25), K(25)

'T$ = operation T = time per operation, min.
'K = selected pointer

RANDOMIZE : CLS
! Read tasks, times.
INPUT "What is target time (in minutes)";TT

FOR I=1 TO 25
READ T$(I), T(I): K(I)=0
NEXT I
S=0
T1=10 'Set difference between returned time S and TT.

GOSUB 1000

170 PRINT "Suggested time is"; S

180

LINE INPUT "Is this acceptable? (y=yes)"; A$

190 IF A$O"y" THEN T1=ABS(S-TT): GOTO 160

200

FOR I=1 TO 25

210 IF K(I)>O0 THEN K(I)=-K(I) 'Mark this first pass.
220 NEXT I

230

GOSUB 1000

240 PRINT "Suggested time is";S

250

LINE INPUT "Is this acceptable? (y=yes)";A$

260 IF A$<O"y" THEN T1=ABS(S-TT): GOTO 230
270 PRINT "Schedule for both workers"
280 S1=0: S2=0

285 FOR I=1 TO 25

290 IF K(I)<O THEN P=ABS(K(I)): PRINT T$(P), T(P): S1=S1+T(P)
300 NEXT I

310 PRINT "Sum, Worker 1:"; Sl

330

FOR I=1 TO 25

340 IF K(I)>0 THEN PRINT T$(X(I)), T(K(I)): S2=S2+T(K(I))
350 NEXT I
360 PRINT "Sum, Worker 2:"; S2

8 Chapter 1 Pointers

