Decision
and Estimation

Es irrt der Mensch so lang er strebt.

Goethe, Faust

Information about the world is acquired by observation and measurement.
the results of which are subject to error. One would like to think it could be
eliminated if only one built elaborate enough instruments and took sufficient
pains. All efforts to be free of error will, however, finally reach a bound set by
nature’s underlying chaos, which infects all observations of physical phenomena
with an innate uncertainty. We shall seek out that ultimate limit in a domain
where observations and their inevitable errors can be analyzed with some clarity
and ease, the domain of optics. Although optical astronomy, communications,
‘and radar furnish our simplest paradigms, the basic concepts to be set forth have
universal applicability.

Acquiring information about a physical entity or system involves either
decision or estimation. Either one must decide which of a set of statements. or
hypotheses, best describes the system insofar as observations permit one to
judge; or one must estimate the values of certain quantities, or paramercrs.
characterizing it. These hypotheses and parameters exist and signify in the
context of some theory about the system. That theory also describes the sources



2 I.  DECISION AND ESTIMATION

of the uncertainty or error that corrupts the observations. The irreducibly
minimum component of error in decisions and estimates is discovered by
analyzing the decision or estimation procedures that minimize some convenient
measure of the average amount of error. In the optical domain there are two
basic sources of uncertainty: the atomic constitution of matter and the
quantum-mechanical nature of light.

Let us begin with an example. Inquiring whether there is a star at a certain
point of the sky, you direct a telescope toward it, photograph the point and its
surroundings, develop the photographic plate, and look to see whether there is a
stellar image at the point in question. If a bright star is there, all well and good,;
but if the star is faint, or absent altogether, it will be difficult to decide whether
one is there or not. Examining the plate under magnification, you perceive that
many of the grains in the emulsion have been blackened by stray light from the
sky. Is there a sufficient additional concentration of developed grains in the
expected patternsto justify deciding that a star is indeed present? Your decision,
whether “yes” or “no,” is liable to error. How can you make it so that the
chance of error is as small as possible? That is the subject of statistical decision
theory, or as it is called in contexts like this, detection theory. ’

If your telescope had .a larger aperture, or if you could expose the
photographic plate for a longer time, collecting more light from that
hypothetical star, your decision could be made with greater assurance. Let us
presume in what follows that the size of the aperture and the duration of the
observation interval are fixed. If committed to photography, you must adopt
some procedure for analyzing the distribution of developed grains in the plate.
The procedure may even involve elaborate calculations by a digital computer,
but it will ultimately ﬁead to a definite choice between two hypotheses: Hy, “no
star exists at the point in question,” and H;, “a star does exist there.” Such a
procedure is called a strategy. It can suffer two kinds of error, erroneously
deciding that a star is present, or failing to report a star that is really there.
Imagine repeating the strategy many times under the same general conditions,
with the same background illuminance, photographic materials, and processing.
The relative frequencies or probabilities of the two kinds of error will depend on
the nature of the strategy, the magnitude of the star, the optical organization of
the telescope, and the statistical properties of the light and of the granularity in
the plate. In principle those error probabilities can be calculated. Fixing the
probability of the first kind of error, or ““false alarm,” at some tolerable value,
you may seek a decision strategy for which the probability of the second kind of
error, or “false dismissal,” is as small as possible. Statistical decision theory,
which we shall introduce in Chapter II, shows how to go about this.

Perhaps there is a better way than photography. You might try a
photoelectric cell instead, focusing the light from the hypothetical star on a
surface that emits photoelectrons, and counting the total number emitted during

i
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the observation interval. If a large enough number is counted, you decide that a
star is really there. This procedure too is subject to error, for background light
also ejects photoelectrons, and their emission is a random process. Perhaps if you
also determined from what point of the image plane each photoelectron came,
for instance by dividing the surface into a mosaic of tiny isolated elements, and
if you. effectively utilized the known distribution of illuminance in a stellar
image, you could reduce the probability of error.

Whatever technique is used to record the light and analyze the result, there is
a limit to the detectability of a star or other luminous object. It is set by the
random nature of both the light to be detected and the interfering background
light. Whatever is done to the light entering the telescope — its passage through
lenses and its reflection from mirrors, its incidence on photosensitive materials,
the subsequent analysis of their response — all this is really a processing of the
electromagnetic field as it exists at the aperture of the instrument during the
observation interval. To determine the fundamental limitation set by nature on
the detectability of the object, we look for the best way of processing that
aperture field.

In radio communications and radar the need 'to ferret weak signals out of
random background noise called forth a theory of signal detection. At first, a
receiver was judged on thebasis of the signal-to-noise ratio at its output. During
World War 11, designers of radar and communication systems perceivéd that the
basic function of a receiver is not to produce a large signal-to-noise ratio, but to
decide as reliably as possible about the presence or absence of a signal of a certain
kind, or to identify one of a class of possible information-bearing signals
[LaU 50]. They realized that these are decisions under conditions of uncertainty
and can be treated by the theory of statistical decisions, or “hypothesis testing.”
developed during the thirties by Neyman and Pearson [NeP 33a ,b], Wald
[Wal 39], and others.

In radio and radar the basic data are the values of the voltage v(t) at the
terminals of an antenna during a certain interval (0, T) of observation. This
voltage is a random process described by probability distributions that embody
what is known about the signals to be detected and about the statistical
pfoperties of the noise that corrupts them. Statistical decision theory shows how
best to process that input voltage v(t) in order to decide among the several
hypotheses about what signals it contains. It prescribes certain kinds of filtering
of v(t), subsequent rectification, and appropriate logical operations that end in
decisions. The probabilities of error that these incur reveal the ultimate limits on
the detectability or distinguishability of the signals. The communications or
radar engineer then sets about implementing the inferred procedure.

Instead of a single antenna, an array of many electromagnetically sensitive
elements might be constructed in order to obtain a number of input voltages
{vj(t) } that could be so combined as to detect most effectively signals coming
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from a specific direction in the presence of interference coming from all
directions. The array senses the eclectromagnetic field over a certain area 4
during each observation interval, and the theory, by working with the
probability distributions of the field values at points in 4 and at times in (0, 7)),
determines the best way of processing it. The effective area 4 of the array
corresponds to the aperture of our optical instrument.

If those probability distributions are to be meaningful, it must be possible, in
principle, to determine the values of all components of the electric and magnetic
intensities at all points in 4 and all times in (0, 7). Classical physics, which is
adequate to describe electromagnetic fields at radio and radar frequencies,
permits this exhaustive specification. Light, on the other hand, must be treated
by quantum mechanics, which reveals an unavoidable mutual interference among
measurements of the components of the electromagnetic field at various points
and times. Quantum mechanics constricts the set of measurements that can be
made on an electromagnetic field, or on a quantum system in general, and it
renders meaningless the probability distributions upon which ordinary statistical
decision theory is based. In analyzing the detectability of light, we must
determine not only how to process the outcomes of our observations, but even
what to observe in the first place. A new form of decision theory is required.

Classical physics represents the states of a system as points in a multidimen-
sional phase space; quantum mechanics represents them as vectors in a Hilbert
space. The vectors in a Hilbert space are. transformed by linear operators.
Statistically uncertain states, described classically by a probability distribution
on the phase space, are accounted for in quantum mechanics by a particular kind
of linear operator known as a density operator. Ordinary decision theory shows
how to decide which of a set of probability distributions best describes a
classical physical system; quantum decision theory seeks the best means of
choosing among a number of potential density operators.

A decision procedure, as we shall learn in Chapter II, is represented in
conventional decision theory by a probability distribution on the space of
observed data. In quantum decision theory it is expressed by a set of linear
operators subject to certain constraints and known as a probability-operator
measure. By combining the density operators and the elements of the
probability-operator measure, one can calculate the probabilities of the errors
incurred by the decision strategy.

The concept of a probability-operator measure generalizes von Neumann’s
treatment of the “‘properties” (Eigenschaften) of quantum systems in terms of
sets of commuting projection operators [Von 32, pp. 130—134; Von 55,
pp. 247-254]. This broader formulation, due to Davies and Lewis [DaL 70],
does not alter the physical implications of quantum mechanics, but clarifies the
roles of observation and measurement and provides a framework for decision
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theory. We introduce it in Chapter III in the course of a summary of the
mathematical language and the basic principles of the quantum theory.

Once arbitrary quantum observation and decision strategies have been
formulated mathematically, we can set up a means for determining the strategy
for which the average probability of error, or more generally, the average cost of
applying it, is minimum. This optimization theory closely parallels the
conventional decision theory of Chapter ll, but utilizes operators in Hilbert
space instead of functions taking on numerical values. It is explained in Chapter
IV and illustrated by some examples not requiring knowledge of quantum field
theory.

In order to apply quantum decision theory to the detection of light, it is
necessary to understand how the electromagnetic field is treated in quantum
mechanics. Chapter V introduces this subject and presents a convenient calculus,
developed by R.J. Glauber [Gla 63b], for working with the quantum field in a
way that brings out its analogies with the ficlds and oscillations of classical
physics. We show how to define density operators for the field at the aperture of
an optical instrument-during an observation interval by relating it to the field
at a later instant of time in a lossless cavity placed behind the aperture and
serving as a conceptually ideal receiver. We utilize these methods in Chapters V1
and VII to analyze the detection of coherent and incoherent light, with
applications to optical communications and the resolution of close point
sources.

A receiver, instead of choosing among various potential signals, or deciding
whether a ceriain signal is present or absent at its input, may be required to
estimate one or more parameters of an incoming signal. A radar device, for
instance, measures the arrival time of an‘electromagnetic echo pulse in order to
determine the distance to a target. The amplitude and the phase of a modulated
laser signal may convey information that is to be extracted by estimating their
values. When a telescope is used to fix the position of a star, it can be considered
as estimating two parameters of the spatial coherence function of the light at its
aperture. Such estimates are subject to error because of interfering background
light and because of the quantum nature of the signal itself.

Conventional statistical estimation theory shows how to estimate the
parameters of the probability density function of a set of data in such a way that
the average cost of errors in the estimates is minimum. In the quantum theory it
is a matter of estimating parameters of the density operator of a system, and one
seeks the observational strategy yielding minimum average cost. Again the
strategy is characterized in greatest generality by a probability-operator measure.
Chapter VIII develops-this quantum estimation theory and applies it to estimates
of the complex amplitude of a coherent light wave, the arrival time and carrier
frequency of a coherent optical pulse, the intensity and frequency of light from
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a natural, incoherent source, and the coordinates of the position of a star. We
shall see how the minimum attainable mean square errors in these estimates
depend on the strengths and other properties of signal and background.

All these quantities are parameters of the density operator of the electro-
magnetic field at the aperture of the observing optical instrument, the aperture
field being regarded as a quantum system. The estimation of any of those
parameters is in a certain sense a measurement to be pefformed on the system.
Now a measurement is ordinarily associated in quantum theory with a
self-adjoint operator on the Hilbert space, and the outcome of the measurement
is required to be a number in the spectrum of that operator. In signal-parameter
estimation, however, the operators associated with the quantities to be estimated
are not apparent and may not even exist; and some extension of the
quantum- -mechanical treatment of measurement is necessary. The concept of a
probdbllxty operator measure appears to be just what is needed. We are then
tempted to inquire whether the measurement of quantum-dynamical variables,
such as the position and momentum of a particle, might not instructively be
viewed as estimation of parameters of a density operator. We shall find that this
approach resolves certain conceptual difficulties with quantum measurement,
such as that attached to “simultaneous measurement” of position and momen-
tum, and it provides a new way of interpreting the uncertainty principle. Perhaps
quantum decision and estimation theory can in this way clarify that most
problematical of all sources of observational uncertainty, the quantum-
mechanical nature of physical reality.



Classical Detection
and :
Estimation Theory

... (reason also is choice) . . .

Miiton, Paradise Lost (111, 108)

1. HYPOTHESIS TESTING

Our summary of conventional detection and estimation theory, necessarily
brief, will be confined to its simplest aspects and organized in such a wéy as to
bring out most clearly its parallels to the quantum-mechanical theory, of which
it is really a special case. The examples, chosen from elementary signal-detection
theory, will perhaps relieve the bleak formality of the treatment, as well as
provide a basis for comparison with the quantum results. Books in which the
conventional theory is expounded and applied at great length can readily be
obtained [Leh 59, Mid 60, Hel 68d, VaT 68], and further developments of the
theory are recorded in such journals as Information & Control and the JEEE
Transactions on Information Theory, Aerospace & Electronic Systems, and
Communication Technology. In analogy to the term “classical physics” for the
domain in which the conventional theory is valid, and with apologies to those in

: 7
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whom the word *“classical” evokes a calm vision of antiquity, we call this subject
classical detection and estimation theory .

A certain system is observed in such a way as to obtain n numbers v,,
Uz, ...,U,, on the basis of which a decision is to be made about its state. It
might, for example, be the antenna of a radio-communication receiver, at whose
terminals the voltage v(t) is sampled n times during an observation interval
(0, T), and one is to decide which of a number of possible signals reached the
antenna during (0, 7). The system may be in any one of M states, and the
proposition, “The system is in state j,” we call hypothesis #;,j=1,2,..., M.
For the receiving antenna, hypothesis /; asserts that

v(t) = si(t) + n(1),

where s;(¢) is the jth signal and n(f) stands for the random noise. The data (v,
Uy, ...,Un)=v are random variables whose joint probability density function
(p.d.f.) is pj(v) = pj(vy, vy, ..., v,) When the system is in state j. From past
experience it is known that the system is in state / with a relative frequency ;,

M
T ¢=1 (1.1)

J=1
The numbers §; are the prior probabilities of the several hypotheses.

As a consequence of each decision, certain actions are taken depending on
which hypothesis is selected; if nothing were to be done, there would be no
point to making the decisions. These actions entail certain costs that also depend
on the actual state of the system. Let Cj; be the cost incurred by choosing
hypothesis H; when H; is true. These numbers C;; assign relative weights to the
various possible errors and correct decisions. The decision procedure is to be
repeated over and over under the same general circumstances, and one desires a
procedure whose average cost is minimum.

A decision procedure or strategy must prescribe which hypothesis is to be
chosen for each possible set v of data. One can imagine making the decisions in a
way that involves a random element such that there is a probability m;(v) that
hypothesis H; is chosen when the set v of data is observed, i=1, 2,..., M.
These probabilities are subject to the conditions

. M
o<mv)<1, Z m(v) =1 (1.2)
i=1

We say that the functions {m;(v)} specify a randomized strategy. The choice of a
hypothesis might be made by a roulette wheel so designed that the probabilities
m; of its stopping at the numbers 1, 2,..., M depend on the outcomes v,
Uy,...,V, of the observation. Pure guessing among the M hypotheses
corresponds to m(v)=M ™' for all i. Decision theory was formulated in this
general manner by Wald [Wal 39, Wal 50].



1. HYPOTHESIS TESTING 9
The probability that hypothesis H; is chosen when hypothesis H; is true is
Priilj}= | m(vpimdy, (13)
R
where d"v =dv, dv, - - - dv,, is an elementary volume in the n-dimensional space

R of the data v. Upon this event thie cost Cj; is incurred. As H is true with
probability {; a priori, the average cost of the strategy is

o M M
C=C[{m}] = _EI '21 Gy Priilj}
i=1j=
M M
=2 Z4C [ mvpmdiy. (1.4)
i=1j=1 R
Defining for each hypothesis H; the “‘risk function”
M
Wi(v) = _21 §iCiipj(v), (1.5)
j=
we write the average cost as
_ M
c= [ I wmmadh, (1.6)
R i=1

and we seek the M functions m;(v) that both satisfy (1.2) and make C as small as
possible.

The value of the integral in (1.6) will be least if the integrand is made as small
as possible at each point v € R. The average cost C will therefore be minimum if
at each point v we choose the hypothesis for which the risk W;(v) is smallest;
that is, we set '

m(v)=1, m(v) =0, Vi #j, (1.7)
at all points v € R for which

Wi(v) < Wi(v), Vi #]. . (1.8)

If there is a tie among two or more numbers W;(v) as the smallest of the set, it
does not matter whether one always picks a particular one of these or chooses
among them at random. Our strategy really does not require randomization at
all. In effect it divides the data space R into M regions Ry, R,,..., Ry,
specified by (1.8), and when the data point v falls into region R;, hypothesis H;
is chosen.We included the possibility of randomization, however, in order that
the optimum procedure could be developed in a manner as nearly like the
derivation in quantum decision theory as possible.
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In order to facilitate the comparison, we introduce the function

T(v) = min Wj(v). (1.9)
j
Then (1.7)—(1.9) can be expressed as
[Wi(v) — T(W)] mi(v) = 0, . (1.10)
W;(v) — T(v) =0, (1.11)

for all data sets v and all hypotheses #;. Furthermore, from (1.2) it follows by
summing (1.10) over i that _

M
T(v) = ,_El Wi(v)mi(v), (1.12)
and by (1.6) the minimum average cost is
Conin = jT(v)d"v. (1.13)
R

Let the functions {m,;'(v)} define some other strategy than the optimum; they
must obey the conditions in (1.2). The difference between the cost C ' that this
other strategy incurs and the cost Cpin defined by (1.10)—(1.13) is, by (1.6),

_ _ M
C —-Coin=2 j [W,(v) — T] 7' (v) d™v. (1.14)
i=1 YR

Because of (1.11) and because the probabilities m;'(v) must be nonnegative,

C' = Cpin =0, (1.15)

and (1.10) further shows that the minimum cost is attained by the set {m;(v)}.
Because of (1.10), m;(v) must vanish for all hypotheses H; for which
W;(v) > T(v). For those hypotheses H; for which W;(¥) = T(v), the probabilities
m;(v) can be set equal to any nonnegative numbers summing to 1. Usually there
is only one such hypothesis, and we obtain the equivalent prescription in (1.7)
and (1.8).

The risk functions W,(v) figuring in this analysis are proportional to the
posterior risks 7;(v) of the hypotheses in view of the data vobserved,

M
ri(v) = IEI Cix Pr{Hy | v}=Wi()Ip(v), (1.16)

where

Pr{H | v} = $xpk(WP(), (1.17)
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is the posterior probability of hypothesis Hy,
M
p(v) = El §ipi(v)
=

being the overall join't p.d.f. of the data. The best strategy picks the hypothesis
with smallest posterior risk.

In “An Essay Toward Solving a Problem in the Doctrine of Chances,” which
appeared in the Philosophical Transactions of the Royal Society of London in
1763, the Reverend Thomas Bayes treated the problem of making decisions
under conditions of uncertainty, and he recommended selecting that hypothesis
for. which the posterior probability is greatest [Bay 58]. The formula in (1.17)
for calculating it is calied Bayes’s rule. Bayes’s prescription results from an
assignment of costs

which penalizes all errors equally, or from one that equally rewards all correct
decisions,

Ci=-1; G;i=0, i#j. (1.19)

This strategy of Bayes’s minimizes the average probability of error
M .M
Po=1-Z¢Prjlj}=2Z¢ Z Piklj} (1.20)
j=1 j=1" k#j

Nevertheless, current literature calls a strategy minimizing the average cost for
any assignment {Cj; } of costs a Bayes strategy, and this general formulation of
hypothesis testing is often termed ““Bayesian.”
_ The data v have been considered here as points in a continuum and assigned
probability density functions p;(v), j=1, 2,..., M. When on the other hand
 they are discrete random variables, the p.d.f.’s pj(v) must be replaced throughout
our derivation by the probabilities Pr{v| H;} of obtaining the data under the M
hypotheses. Integrals over the data space R are replaced by summations. With
these changes, the Bayes strategy continues to be specified by (1.7)—(1.8) or by
(1.10)—(1.12). Ties among the minimum values of W;(v) must now be
anticipated, but can be resolved arbitrarily.

In detection theory the set of available data is often infinitely large; one can
imagine sampling the voltage v() at the antenna terminals at all instants of time
during the observation interval. Difficulty then arises in defining the probability

~ density functions p;(v). The most direct approach is to start with a finite set v of
n data and pass to the limit n —> . The limit process is simplest if carried out on
the posterior probabilities Pr{H} | v} defined in (1.17). One sets up a dummy
hypothesis H, under which the p.d.f. of the data is po(v); often this is taken as
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their joint p.d.f. when no signals at all are present and the data represent samples
of the noise alone. The posterior probabilities can then be expressed as

M
Pr{Hy| v}= kak(V)/El A (v), (1.21)
j=

where
~»

Ak (v) = p(V)/Po(v), k=1,2,...,M, (1.22)

are the likelihood ratios. They go into functionals Ax[v(t)] of the observed
voltage in the limit n > of infinitely dense sampling. Examples will be
presented in the following sections.

2. BINARY DECISIONS

(a) The Bayesian Formulation

When there are only two hypotheses between which to choose, they are
customarily labeled H, and H,. In signal detection, hypothesis Hy usually
asserts that the input v(¢) at the antenna terminals to the receiver contains only
noise,

Hy:  u(t) =n(2);

hypothesis H, asserts that one of a specified class of signals s(¢) is on hand as
well,

H,: u(t)=s(t) +n(2).

Statisticians term H, the “null hypothesis” and / the “alternative” [Leh 59].

Under these hypotheses the data v=(vy, 03, ..., v,,), which may be samples
of v(f), have the joint probability density functions pj(v), j =0, 1. The prior
probabilities of the two hypotheses are ¢o and &y, $o + &y = 1. The cost of
choosing hypothesis H; when H; is true is again designated by C;;. The Bayes
strategy selects hypothesis H, when the data v are such that W;(v) < Wy(v),
these risk functions defined as in (1.5). The reader can easily show that this
condition is equivalent to :

AV)=p(V)Ipo(v)> Ao, (2.1)
where the decision level A, is given by
Ao =$0(Cro — Coo)l§1(Conr — Civ)- (2.2)

The function A(v) is called the likelihood ratio, and in the limit of an infinite
number of data it goes into the likelihood functional A[v(t)]. This is sometimes
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called the “Radon—Nikodym derivative” of the probability measure of the data
v(t) under H, with respect to their probability measure under H,.

(b) The Neyman—Pearson Criterion

Many statisticians spurn the Bayesian approach, averring that in practice the
costs Cj; are difficult to ascertain and the prior probabilities {; unreliable if not
meaningless. The panoply of costs and prior probabilities is most easily
eliminated from binary hypothesis testing, for which an alternative viewpoint
was proposed by Neyman and Pearson [NeP 33a, 33b]. The probability

Qo =Pr{H | Hy}

of choosing hypothesis H, when H, is true is fixed at or below some tolerable
level, and the optimum strategy maximizes the probability

Qg =Pr{H,|H, }

of correctly choosing H, when H, is true. Statisticians call Q, the “size” and Q4
the “power” of a statistical test. In detection theory they are called the
false-alarm probability and the detection probability, respectively. A test or
strategy for which Q4 is maximum for a preassigned value of Q, is said to satisfy
the Neyman—Pearson criterion. We shall see that it too bases its decision on the
value of the likelihood ratio A(v).

Allowing for the possibility that the data may be discrete, and adopting a line
of reasoning parallel to what will be followed in the quantum-mechanical
counterpart of this problem, we consider a randomized strategy. The probability
. that hypothesis H; is chosen when the set v=(v,, vy, ...,v,) is observed is
denoted by w(v), 0<m(v)<1; hypothesis H, is chosen with probablllty
1 — 7(v). The false-alarm and detection probabilities are then

Qolr] = [ m(po(v)d™y 23)
R
and
Qulrl = [ a@pi )L [ 1 mA@Po(v) d™, (2.4)
R R

where A(v) is the likelihood ratio defined in (2.1).

For each possible function 7(v) taking values in the closed interval [0,1], plot
the point (Qo [7], Q4 [7]) in the (Qo, Q4) plane. It lies somewhere in a region D
within the square 0 < Q, < 1,0 < Q4 < 1. As shown in Fig. 2.1, this region D is
convex. The reasons for this are as follows:

Suppose that the strategies represented by functions 7'(v) and n”(v) determine
the two points A: (Qo’, Qq') and B: (Qo", Q4"), and consider the decision
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0

Fig. 2.1. Falsé—alarm and detection probabilities in binary decisions.

probability function
m(v) = o' (v) + " (v), 0<a<l1, B=1-aq

which corresponds to picking one of the two strategies at random, the first with
probability «, the second with probability 8. It leads to the false-alarm and
detection probabilities

Qo =aQo +BQ0", Qd' =aQq’ +BQq",

and the point (Qy, Qq) lies on the straight-line segment connecting 4 and 5.
Thus for any pair of points 4 and B in D, all points on the line joining them
must ‘also lie in D, and D is therefore convex. Taking 7(v)=0 and n(v) =1,
respectively, shows that D includes the origin (0, 0) and point (1, 1) at the
opposite corner of the square.

Designate by Q4 = g(Qo) the curve bounding the region D above. That curve
is convex upward, as shown in Fig. 2.1, because of the convexity of D. The
straight line L tangent to it at the point (Qo, 8(Qo )) must therefore lie above D
everywhere else. Let A be the slope of the line. Then for all decision functions
n(v)

£(00) =200 > Qalrl ~AQolr] = [ 7AW - Alpo(¥) ™.

The decision function m(v) attaining the maximum detection probability Q4 for
the given false-alarm probability Qo will be the one for which the integral on the
right-hand side is as large as possible, and because po(v) >0, that decision
function must satisfy

a(v)=1, AV)—A>0; n(v)=0, A(v)—-A<O0. 2.5)
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Let Z be the set of data points v for which A(v) = X exactly. Then we put
n(v) =1, vezZ, 0<f<l1, (2.6)
where f and \ are such numbers that
i Qo =fPI{VEZ | Hy } + Pr{A(V) > X | Ho } 2.7

equals the preassigned value of the false-alarm probability. Thus when A(v) > A,
hypothesis H, is always chosen, and when A(v) <A, H, is chosen; but if A(v)
equals A\ exactly, hypothesis H; is chosen with probability f, by using some
chance device such as a properly weighted coin. The probability of detection is
then

Q4 =fPrVEZ | H, } + Pe{A() >\ | H, }. (2.8)

For continuous data, the region Z has in general zero probability under both
hypotheses. The value of the decision level A=Ay is then selected so that the
false-alarm probability

' Qo= [ UIAW) =N po)d"v 2.9)
R

1
takes on the preassigned value; U(x) =1, x > 0; U(x) =0, x <0. The boundary
curve Q4 = g(Qo) is smooth, and it is parametrized by the value of A, which runs
from 0 at (1, 1) to'e at (0, 0). It is called the operating characteristic of the
binary-hypothesis test.

When the data are discrete, the curve Q4 = g(Q,) has a polygonal form. On
each of its straight segments the parameter X has a constant value, and a segment
is traced from left to right as f varies from O to 1. The likelihood ratios A(v) now
take on only a countable set of values, which one arranges in descending order.
One adds the probabilities Pr{ A(v) | Hy }, starting with the highest value of A(v),
until the preassigned value of Qo is just exceeded. The decision level X = A, is
equal to the likelihood ratio A(v) whose probability was last added in.

As an example of this kind of randomized strategy, let the decision between -

H, and H, be based on the nonnegative integral-valued datum n whose
probabilities under the two hypotheses are

Pr{n | H;}= (1 — v)v", i=0,1, n>0, (2.10)

with v; > vg; n might be the number of photoelectrons emitted during a certain
interval (0, T) by a detector onto which thermal light of extremely small spectral
width W < T™! is incident. The likelihood ratio

s (2 ) (=)

increases monotonically with n; hypothesis H, will always be selected when 7

\
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Fig. 2.2. Operating characteristic for decisions between geometric distributions: v, = 0.5,

v, =0.8.

exceeds a certain number v, and H, whenever n <vy.Whenn = v, however, it will
be necessary to choose H, with such a probability m(v) = f that

Qo =f(1 —vo)vo” + =§+1 (1 —vo)o" =f(1 — Voo’ + 00" !

(2.11)

equals the preassigned false-alarm probability. The decision level v is the greatest
integer in (In Qo)/(In vo), and fis then easily calculated from (2.11). The

detection probability is

Qa =f(1 —vy)o,” +0,"* 1

(2.12)

For each integer v, Qd is a linear function of f and a fortiori of Q,, whence the
polygonal form of curve Qq = g(Qo). Figure 2.2 shows this operating character-

istic for v = 0.5, v, =0.8.

(c) Detection of a Known Signal in Gaussian Noise

(i) Forming the Likelihood Ratio

In the simplest binary-detection problem a receiver is to choose between two

hypotheses,
HO: U(f)=n(t),

H:

v(t) = n(1) + (1),

about the voltage v(r) between the terminals of its antenna as observed during an
interval (0, T). Here s(t) is a signal of completely known form, and n(¢) is a
Gaussian random process with expected values zero,

E[n(t) l Hl] = 0’

i=0,1,
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and autocovariance function
E[n(t)n(t;) | H;] =o(1y, t,), i=0,1. (2.13)

We shall treat this simple detection problem as an éxample, referring the reader
to textbooks for further details [Mid 60, Hel 68d, VaT 68]. '

In order to specify the probability density functions needed for forming the
likelihood ratio, we must sample the input v(¢) in some way. A convenient and
versatile kind of sampling generates the numbers *

T
ve= [ fulowto) dr, 2.14)

in which the functions f;(¢) form a complete orthonormal set over (0, 7). When
we say that n(r) is a Gaussian random process, we mean that any finite number
m of these samples has a joint p.d.f. of the Gaussian form,

pi(v) = (2m)™™/% | det | ~*
1

1 mom
xexp[—z k§l 1;1 Hic (Vi — Ox Moy ‘171:')] o 1501, (2.15)
in which
0, i=0,
5 =E H)= T
TR o Chwa, =1, @ag)
0

are the expected values of the samples and

Ok = E[(vg — 0 Wvy — o) | H;)

T T .
o fo fo fe(t)lta, 11)fi(t) dt, dt, (2.17)

are their covariances; ¢ = ||yl is the m x m matrix of these covariances, det ¢
its determinant, and

p=e =yl (2.18)

its inverse. Gaussian noise arises from the fluctuations of the myriad atoms, ions,
and electrons composing the receiver and its surroundings, which induce a
randomly fluctuating voltage of this kind at the input terminals of the receiver.

The likelihood ratio is most simply formed by choosing the sampling
functions f(r) so that the covariance matrix ¢ is diagonal. To this end the
functions fj(7) are taken as the eigenfunctions of the autocovariance A1y, 1),
defined by the integral equation

,
Nefi(t)= | ez, )ty diy. (2.19)



