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Foreword

This book is intended for anyone who wants to learn to write programs in Algol
68. It is based on the course which we have given for some years at Nottingham
to mathematics undergraduates learning their first programming language. (It
would perhaps be more accurate to say that it is based on the course we would
have given had a suitable textbook been available!) We certainly do not require
you to be an expert mathematician — the mathematical content of this book is
minute. Nor do we require you to know some other programming language
already ; if you do, you may be able to skim some parts rather quickly, but you
will also probably have some bad habits to unlearn (as we did, when we came to
Algol 68). We do assume a little basic knowledge of computer appreciation, as
outlined in the Introduction; a logical mind is desirable, access to a computer is
probably essential, and access to an Algol 68 expert will be helpful.

In its formative years, Algol 68 had a very bad press. Stories circulated of
formidably obscure documents and of the high priests of the language delib-
erating in conclave on whether a particular full stop in the defining report ought
to be in italics. As usual, there was a grain of truth in these stories, and a
mountain of exaggeration; new initiates may rest assured that there is nothing in
the use of Algol 68 (as possibly opposed to its rigorous definition) which is in
any way harder than the corresponding use of Fortran (or Algol 60, Basic,
Pascal, PL/1, APL or any other computing language). We are certainly not high
priests of Algol 68 (not even priests — perhaps missionaries). Our concern is to
write programs in the most effective way possible, and to teach others to do so;
and we are quite sure that Algol 68 is currently far and away the best vehicle for
writing general purpose programs simply, efficiently and correctly. We hope we
can convince you.

We have had to steer a careful course between Algol 68R — the first practical
and working version of the language — and Revised Algol 68, for which effective
compilers have — at last! — recently appeared (for historical details, see the
Introduction and Appendix 7). When we wrote the first draft of this book, in
1972, we concentrated on 68R. We had ourselves seen the output from some
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20000 (mainly student) programs in that dialect, certainly more than half the
world total, whereas the real language existed only on paper. Today, Algol 68R
still accounts for perhaps 90% of the world total throughput of Algol 68
programs — its extensive use in commerce, industry and (applied) research
ensures that — but educational practice is slowly but surely moving towards the
purer form of the language. Revised Algol 68 is available on every important
model of computer, and is absolutely standard and understood everywhere,
whereas 68R is specific to large ICL machines. Our revised text therefore treats
68R as the heresy — albeit a very important one. We have tried to discuss topics
in a way which applies to both versions, at the occasional expense of generality.

A note for the untutored reader. We have concentrated on the elementary
parts of the language because there is adequate documentation in the existing
literature of the advanced parts, because the further developments depend
significantly on your interests and on the equipment available for your use, and
because the elementary bits constitute on their own a self-contained pro-
gramming language which is simpler to use, generally more efficient, and appreci-
ably more powerful than traditional languages such as Fortran and Algol 60.
Nevertheless, you may find some (a little, we hope) of the material in this book
hard and subtle and sophisticated. When you get stuck (and you may be happy
indeed with your progress if you do not), please do not give up. Plough on, skim
a little, look at the applications of the parts you do not understand, then come
back and try again and again. You will get there in the end; and with luck you
will have acquired an understanding that Fortran will never give you! Equally,
we may sometimes appear to be labouring the most obvious points. This will
usually be to help the experienced reader get rid of his bad habits — Algol 68 is
full of obvious points that were anything but obvious a few years ago.

A note for high priests. This book is not meant for you. We have tried to
describe one (our!) practical way of doing things, rather than all the theoretical
ways; we felt that the ultra-precision and detail which some (not all, thank good-
ness) of you insist on would produce an extraordinarily dull book.

Finally, our acknowledgements. We have cribbed shamelessly from everyone,
colleagues, students, visitors, correspondents, conference delegates, friends,
relations, Uncle Tom Cobleigh and all, who has aired thoughts about Algol 68
in our presence. Our thanks to them all, but particularly to

— Sue Bond, Peter Hibbard, Richard Housden, Charles Lindsey, Brian Meek
and Philip Woodward, who read part or all of sundry versions of our manuscript
(but bear little or no responsibility for its current state — except BLM, who
perpetrated at least two of the ‘jokes’),

— Joan Griffiths, Evelyn Lawes, Peggy Scheppele and (most nobly, since
she had first to learn how to use the Unix operating system whereby our manu-
scripts were prepared and edited) Anne Jennings for their patient typing;

— Julie Brailsford, joint chief guinea pig (with Anne Jennings);
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— Larry Hanes and Alan Robertson, who converted and ran our programs
on the Cyber 175 at the University of Illinois;

— and last but by no means least Ellis Horwood. In 1972, we naively believed
that the world of publishing was a cosy, somewhat old-fashioned world of
gentlemen and leather chairs. Five years later, after adventures too tedious to
relate, we thought of it more as a cynical world of espionage and deceit. It was a
real pleasure to us to meet, through Brian Meek, a family concern which has
restored our faith and which has brought our manuscript to the light of day.

All our programs have been tested using the Algol 68R compiler on the ICL
1906A at Nottingham, the 68S compiler on our departmental PDP 11/34, and
the CDC Algol 68 compiler on the Cyber 175 at the University of Illinois, and
they all work! Nevertheless, it is too much to hope that all errors have been
detected. Responsibility for any remaining program bugs or textual mishaps rests
firmly with us, and we should be glad to hear of them.

DFB, ANW,
July 1978






Introduction

0.1 ALL YOU NEED TO KNOW ABOUT COMPUTING . . .

This book is about a specific way of programming computers. We are going to
present at least the basic parts of a total philosophy which we feel offers a better
approach to computing than the prevalent current practice. Why better? Really,
just because it is a total philosophy. Algol 68 is far from perfect, but it seems to
us to represent the first reasonably successful attempt to make everything ‘slot
together’. Before Algol 68, computing, like Topsy, just ‘growed’; one result
being that you had to choose between programs that looked nice and programs
that worked efficiently. Now you can have both! We hope we can convince
you — if you need convincing — about Algol 68; if we cannot, then at least you
should be able to return to your old methods — if any! — with a new outlook.

We have to start somewhere. We assume that you have a reasonable grasp of
the material usually presented in a computer appreciation course or textbook.
You will find it advantageous to have access to a computer with Algol 68 facili-
ties; but we shall not assume any previous programming experience. Indeed, in
Some respects, previous experience may even be harmful, because the bad habits
picked up while learning can be very persistent — and many of today’s bad
habits were the standard methods of ten years ago.

If everything in this paragraph makes sense to you, you know enough to
read this book. If some concepts are unfamiliar, or only hazily remembered,
you should do some preliminary reading; see, for example ‘Using Computers’, by
B. L. Meek and S. Fairthorne (Ellis Horwood, 1977). A computer is controlled
by a program, which guides the computer in processing information (data
processing). The information is transferred into and out of the computer by
means of peripherals, such as card readers and tape readers for input, and line-
printers for output. Information may also be transput (input or output) via
backing store, such as magnetic tapes, discs or drums. For real time or online
work, transput may be to a teletype terminal or to a visual display unit. The
hardware of a computer system comprises the computer itself together with its
storage devices and peripherals. The software comprises the operating system
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and all the programs, such as assemblers, loaders and compilers, needed to make
the computer usable. The computer contains at least one central processing unit
(consisting of a control unit and an arithmetic unit), and a certain amount
(perhaps 256K words) of core storage or other memory. The memory is divided
into words (storage locations, memory cells), each word having an address. Each
word contains a certain amount of information, perhaps 24 bits; the information
may, for example, be a number (an integer or a floating point number, usually)
or part of a number, expressed in binary notation, or some characters, or an
address, or an instruction. It is not usually possible to determine which of these
sorts of information a given bit pattern represents. To solve a computing
problem, you must write a program and appropriate job control, which may give
the operating system such information as your identification, the files to be used
for transput, and the amount of storage your program will need. Your program
will be written in some language, either low level (conforming closely to the
machine code of the computer) or high level (corresponding more to some
mathematical or logical notation). A high-level language is translated (compiled)
automatically into machine code by its compiler; it will almost certainly provide
you with facilities for expressions, loops, conditional branches (jumps), sub-
routines (functions, procedures, routines) and transput, and it should be much
easier to test and debug programs than in low-level languages.
Now read on . . .

0.2 HIGH-LEVEL LANGUAGES

The early history of high-level languages is very confused, with every computer
installation developing its own ‘autocode’, each having features pirated from
earlier versions (on the same or different computers), features specific to a par-
ticular computer, features put in at the whim of the local expert, and so on. Out
of the confusion, there emerged three high-level languages which gained general
acceptance throughout the computing world, and which indeed are still (regret-
tably, perhaps) prevalent today, namely Fortran, Algol 60 and Cobol.

Fortran (FORmula TRANslator) was originally developed by IBM for their
own computers, but it proved sufficiently popular that nearly every computer
possesses a compiler for it. (One of the advantages of high-level languages is that,
if the language is reasonably machine independent, it may be possible to write
compilers for the same language on different machines, thus greatly easing the
problems of transferring programs from one machine to another.) Fortran is
(supposedly) an easy language to learn, and it is possible on most computers to
compile it into very efficient machine code. It provides for very easy evaluation
of formulas, fairly easy construction of programs using loops and conditions,
and rather rudimentary storage control, transput and subroutines, all in a form
which is somewhat similar to ordinary algebra. It is still very widely used by
engineers and scientists for whom efficient evaluation of formulas is a para-
mount consideration.



