Ellis Horwood-Publishers

COMPUTERS AND THEIR APPLICATIONS

Introductory
Algol 68
Programming

D.F. Brailsford A.N.Walker

INTRODUCTORY
ALGOL 68
PROGRAMMING

INTRODUCTORY
ALGOL 638
PROGRAMMING

D. F. BRAILSFORD and A. N. WALKER
Department of Mathematics,
University of Nottingham

ELLIS HORWOOD LIMITED
Publishers Chichester

Halsted Press. a division of

JOHN WILEY & SONS

New York - Chichester - Brisbane - Toronto

First published in 1979 by

ELLIS HORWOOD LIMITED
Market Cross House, Cooper Street, Chichester, West Sussex, PO19 1EB, England

The publisher’s colophon is reproduced from James Gillison’s drawing of the
ancient Market Cross, Chichester

Distributors:

Australia, New Zealand, South-east Asia:
Jacaranda-Wiley Ltd., Jacaranda Press,

JOHN WILEY & SONS INC.,

G.P.O. Box 859, Brisbane, Queensland 40001, Australia.

Canada:
JOHN WILEY & SONS CANADA LIMITED
22 Worcester Road, Rexdale, Ontario, Canada.

Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester, West Sussex, England.

North and South America and the rest of the world:
HALSTED PRESS, a division of

JOHN WILEY & SONS

605 Third Avenue, New York, N.Y. 10016, U.S.A.

British Library Cataloguing in Publication Data
Brailsford, D. F.
Introductory Algol 68 programming. —
(Ellis Horwood series in computer science).
1. ALGOL (Computer program language)
I. Title II. Walker, A. N.
001.6'424 QA76.73.A24 79-40241

ISBN 0-85312-127-3 (Ellis Horwood Ltd., Publishers)
ISBN 0470-26746-1 (Halsted Press)

Printed and bound in Great Britain by
Fakenham Press Ltd, Fakenham, Norfolk

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without prior permission.

Table of Contents

Foreword. o o i 11
Introduction. e 15
0.1 All you need to know about Computing 15
0.2 High-level Languages.. . « ¢ «vww s v s vvvmsssvmovssnsosss 16
03 AlgolB8 5660 :saumscs0ummss s BBV s HEw P S 18
Chapter 1 — Objects. 21
1.1 Introduction it e 21

12 Notationand FixedWords 23

1.3 Program Layout 25

1.4 BasicModes.o e 25
14.1 realandintmodes:sousissvsmwessmuosssoma 26

142 Modebool. 26

143 Modechar. 27

1.5 Collection Modes 27

16 ReferenceModes . :::suwssssmmumsssanmasssnmes s wmes 30

1.7 Identifiers and Declarations 34
1.7.1 Identity Declarations for Direct Modes. 35

1.7.2 Identity Declarations for Reference Modes 37

1.8 EXAmples :: suww s ssmmnms s ommmes s s 888685 @mes sy wmws 41
SUMMATY . . . o e e e e 43
EXerCiSeso e e e 43
Chapter 2 — Program Structure 45
2.1 Introduction 45
22 Primaries. e 47

2.2.1 Denotations and Identifiers 47

6 Table of Contents

2.2.2 Elements of Rows and Structures 47

223 Procedures 48

224 Bracketed Serial Clauses. 48

225 Coercions 49

23 EBXPIessions S0
2.3.1 Monadic and Dyadic Operators 50

2.3.2 Priorities and Order of Evaluation 50

233 ModesofOperand 51

234 Arithmetic 51

2.3.5 General Primaries as Operands. 52

2.3.6 More General Operators. 52

2.3.7 Collateral Evaluation. 54

24 Unitary Clauses 55
2401 Expressions. 55

242 Assignments 55

243 LOOPS: :: nemwsc i mmm ot DEBE 558 BEHEEF 6 e o s 57

2 SKIPS i ¢ 5 5 555 5 5 0855 55 5 w0 o as mmoim o o o o 58

25 Serial Clauses. oo 59
26 Scopesand Ranges 61
2.7 Abbreviated Declarations 66
SUMMAryt 68
Exercises 68
Chapter 3 — Elementary Programs 71
81 . Introduchion :: ssm: s vsnms s s BamIis LEBEAEE 5 bR £5 5 s 71
32 Solving Quadratics 72
32.0 TheBasicProgram : sums:ssmmnmicsammasssvmnsss 42

322 Usinglnput. 73

323 Usingloops i 75

324 DISCUSSION: smws s s vawsssimamsii nons s s sams § 5 79

33 More About Loopso 82
331 The LoopCounter : :: wossissmsasismansissmeion 83

332 Thefrom,byandtoparts 85

333 Thewhilepart............... 85

334 Thedopart........ 87

34 Conditional Clauses. 87
35 RomanNumerals 90
36, PrNtINEDAES sz cw msmme s 5 AuE G 25 RPEb 555 LoEas 5 & B 94
SUMMATY . ..o e 96

Exercises, 96

Table of Contents 7

Chapter 4 — Arraysand Structures 98
4] . IntrodUCHiON w5 s somuw s s s wwm v 5 s smmes i s @ad i 55 mmass 98
42 ROWMOUAES suwssssnmmsssmannmasssmmmess asssss mmes 100
43 Hef [T MOAES 5 c s s s mus o558 mmis 655 mmma s s mae o s o momime 101
44 A Warning About RowModes. 103
45 Indexingof Arrays 103
4.6 Slcing 105
4.7 Ragged Arrays 108
48 Rowsof Charactersandstrings 108
49 STRUCHUTES ; s wmw s 5 s wmmas s wamm s 50 s B s s BRF 576 Bad 110
4.10 Declarations for New Modes 112
411 Array Bounds in Array and Structure Declarations 114
SUMMArYo 114
EXEICISES « wmm s 15 s ms 8 5 5,505,655 5 botionsd 85 8 ieinifion o 5 mmmin v o mie 115

Chapter5 — Procedures 117
5.1 The Philosophy of Procedures. 117
52 Usesof Procedures . s sivow s s ssimm s s smmn s 33 nass sn s 117
53 Librariesof Procedures 118
54 Constructinga Procedure 119
55 CallingaProcedure 121
5.6 A Complete Program Using a Procedure Declaration 122
57 Interfaces 124
5.8 Further Notes on Procedure Modes and Declarations. 126
5.9 Parameters. e 128

59.1 Simple Values and References as Parameters 129
592 Array Parameters 132
593 Structure Parameters. 134
594 Procedure Parameters 134
59.5 A Further Note on Parameter-passing. 135
5.10 Global Quantitiesand Transput. 136
5.11 Results of Procedures and Scopes. 137
5.12 ref proc Modes and Deproceduring. 139
5.13 Recursive Procedures. 141
5.14 Modular Programming — Advantages and Disadvantages 142
SUMMATY e 143
ExXercises 144

Chapter 6 — Transput.o . 146
6.1 Introduction 146
6.2 Communicating Data to and from External Media. 147

8 Table of Contents
6.3 Form of Items for Transput 147
63:] INPUL . ¢ cvs o s tmie s v e mmimie o v v e o s e s s 148
632 Output....... 149
64 Transput Control Procedures. 150
6.4.1 Layout Facilities and Positionin Book 151
6.4.2 Environment Enquiries 152
6.4.3 Book Handling and Internal Transput. 153
644 EVENTS . ¢ sme ¢ s 5955 55 5 6o v s o mmme v & s o s 154
6.5 Dereferencing on Input and Output 154
6.6 Formatted Transput 155
6.6.1 Transput Procedures 155
6.6.2 TheModeformat........................... 157
6.6.3 The Composition of a Format Denotation. 157
6.64 Replication............ 159
6.6.5 Further Notes on Frames, Patterns and Pictures 161
6.6.6 Frame Suppression 162
6.6.7 General Patterns. 162
6.6.8 ChoicePatterns 164
6.69 FormatPatterns............................ 166
SUMMATY .« ..o 166
Exercises 167
Chapter 7 — Case Studies 169
7.1 Introduction 169
T2, ClOCK PAtIENCE -« s « 3 simm 5 5 8 50505 5 5 850 5 5 5 5dios o o o m 170
7.3 Newton’s Iterative Method 178
7.4 WagesSummary 186
7.5 AMap .. 194
Exercises 206
Chapter 8 — Advanced Features 207
8.1 Introduction 207
8.2 Advanced Features Common to Both Languages. 207
8.2.1 Jumps, Labelsand Exits. 207
822 longandshort 209
823 bits 209
824 wnmions 209
825 Coercionsand Casts 210
82.6 Operators 211
8.2.7 Flexible Arrays 214

8.2.8 Advanced References,nilandis. 214

Table of Contents 9

83 Advanced Features Peculiar to Algol 68 221
84 Advanced Features Peculiar to Algol 68R 222
85 Finale. e 224
SUMMALY 55 5 5 mse 5 5 5 B9 ¢ § 5 05 5 5 5 BEwi s s ©mmes o wmm s oo 224
EXCICISES v v o v 5 mvics 5 5 5 5B6 5 5 S AEH 5§ BHEEE T SMPE s EHEE s w0 225
Solutions to EXercisesttt 227
Chapter L. . . o e e e e mmiis s 6 3mE 5 585 SEM 5§ M WSS 5 Bimmss 5 227
Chapter 2o 228
Chapter 3t 229
Chapterd . . . cvve o o wfd 65 %0 EH § ¥ 5 GRAE 3 RHME S § S s 5 5 ma 231
Chapter So e 233
Chapter 6 « s ¢ simiw s 18 mmw s s mmm s s s mmmm o s s wmomm » o v v o mi 234
Chapfer®ccv i onmasisamsies POER s MEEE 33 gwEs: Cup 236
AppendiCes 239
Appendix 1 — Notations and Representations 239
Appendix 2 — Primitive Modes, Objects and Denotations. 241
Appendix 3 — Environment Enquiries, Standard Procedures and
Transput 244
Appendix 4 — Standard Operators. 252
Appendix 5 — Program Development and Error Detection 255
Appendix 6 — Algol 68 Syntax 260
Appendix 7 — Algol 68 Implementations 272

i o, T B SEFEPDEIE U5) : www. ertongbook. com

Foreword

This book is intended for anyone who wants to learn to write programs in Algol
68. It is based on the course which we have given for some years at Nottingham
to mathematics undergraduates learning their first programming language. (It
would perhaps be more accurate to say that it is based on the course we would
have given had a suitable textbook been available!) We certainly do not require
you to be an expert mathematician — the mathematical content of this book is
minute. Nor do we require you to know some other programming language
already ; if you do, you may be able to skim some parts rather quickly, but you
will also probably have some bad habits to unlearn (as we did, when we came to
Algol 68). We do assume a little basic knowledge of computer appreciation, as
outlined in the Introduction; a logical mind is desirable, access to a computer is
probably essential, and access to an Algol 68 expert will be helpful.

In its formative years, Algol 68 had a very bad press. Stories circulated of
formidably obscure documents and of the high priests of the language delib-
erating in conclave on whether a particular full stop in the defining report ought
to be in italics. As usual, there was a grain of truth in these stories, and a
mountain of exaggeration; new initiates may rest assured that there is nothing in
the use of Algol 68 (as possibly opposed to its rigorous definition) which is in
any way harder than the corresponding use of Fortran (or Algol 60, Basic,
Pascal, PL/1, APL or any other computing language). We are certainly not high
priests of Algol 68 (not even priests — perhaps missionaries). Our concern is to
write programs in the most effective way possible, and to teach others to do so;
and we are quite sure that Algol 68 is currently far and away the best vehicle for
writing general purpose programs simply, efficiently and correctly. We hope we
can convince you.

We have had to steer a careful course between Algol 68R — the first practical
and working version of the language — and Revised Algol 68, for which effective
compilers have — at last! — recently appeared (for historical details, see the
Introduction and Appendix 7). When we wrote the first draft of this book, in
1972, we concentrated on 68R. We had ourselves seen the output from some

12 Foreword

20000 (mainly student) programs in that dialect, certainly more than half the
world total, whereas the real language existed only on paper. Today, Algol 68R
still accounts for perhaps 90% of the world total throughput of Algol 68
programs — its extensive use in commerce, industry and (applied) research
ensures that — but educational practice is slowly but surely moving towards the
purer form of the language. Revised Algol 68 is available on every important
model of computer, and is absolutely standard and understood everywhere,
whereas 68R is specific to large ICL machines. Our revised text therefore treats
68R as the heresy — albeit a very important one. We have tried to discuss topics
in a way which applies to both versions, at the occasional expense of generality.

A note for the untutored reader. We have concentrated on the elementary
parts of the language because there is adequate documentation in the existing
literature of the advanced parts, because the further developments depend
significantly on your interests and on the equipment available for your use, and
because the elementary bits constitute on their own a self-contained pro-
gramming language which is simpler to use, generally more efficient, and appreci-
ably more powerful than traditional languages such as Fortran and Algol 60.
Nevertheless, you may find some (a little, we hope) of the material in this book
hard and subtle and sophisticated. When you get stuck (and you may be happy
indeed with your progress if you do not), please do not give up. Plough on, skim
a little, look at the applications of the parts you do not understand, then come
back and try again and again. You will get there in the end; and with luck you
will have acquired an understanding that Fortran will never give you! Equally,
we may sometimes appear to be labouring the most obvious points. This will
usually be to help the experienced reader get rid of his bad habits — Algol 68 is
full of obvious points that were anything but obvious a few years ago.

A note for high priests. This book is not meant for you. We have tried to
describe one (our!) practical way of doing things, rather than all the theoretical
ways; we felt that the ultra-precision and detail which some (not all, thank good-
ness) of you insist on would produce an extraordinarily dull book.

Finally, our acknowledgements. We have cribbed shamelessly from everyone,
colleagues, students, visitors, correspondents, conference delegates, friends,
relations, Uncle Tom Cobleigh and all, who has aired thoughts about Algol 68
in our presence. Our thanks to them all, but particularly to

— Sue Bond, Peter Hibbard, Richard Housden, Charles Lindsey, Brian Meek
and Philip Woodward, who read part or all of sundry versions of our manuscript
(but bear little or no responsibility for its current state — except BLM, who
perpetrated at least two of the ‘jokes’),

— Joan Griffiths, Evelyn Lawes, Peggy Scheppele and (most nobly, since
she had first to learn how to use the Unix operating system whereby our manu-
scripts were prepared and edited) Anne Jennings for their patient typing;

— Julie Brailsford, joint chief guinea pig (with Anne Jennings);

Foreword 13

— Larry Hanes and Alan Robertson, who converted and ran our programs
on the Cyber 175 at the University of Illinois;

— and last but by no means least Ellis Horwood. In 1972, we naively believed
that the world of publishing was a cosy, somewhat old-fashioned world of
gentlemen and leather chairs. Five years later, after adventures too tedious to
relate, we thought of it more as a cynical world of espionage and deceit. It was a
real pleasure to us to meet, through Brian Meek, a family concern which has
restored our faith and which has brought our manuscript to the light of day.

All our programs have been tested using the Algol 68R compiler on the ICL
1906A at Nottingham, the 68S compiler on our departmental PDP 11/34, and
the CDC Algol 68 compiler on the Cyber 175 at the University of Illinois, and
they all work! Nevertheless, it is too much to hope that all errors have been
detected. Responsibility for any remaining program bugs or textual mishaps rests
firmly with us, and we should be glad to hear of them.

DFB, ANW,
July 1978

Introduction

0.1 ALL YOU NEED TO KNOW ABOUT COMPUTING . . .

This book is about a specific way of programming computers. We are going to
present at least the basic parts of a total philosophy which we feel offers a better
approach to computing than the prevalent current practice. Why better? Really,
just because it is a total philosophy. Algol 68 is far from perfect, but it seems to
us to represent the first reasonably successful attempt to make everything ‘slot
together’. Before Algol 68, computing, like Topsy, just ‘growed’; one result
being that you had to choose between programs that looked nice and programs
that worked efficiently. Now you can have both! We hope we can convince
you — if you need convincing — about Algol 68; if we cannot, then at least you
should be able to return to your old methods — if any! — with a new outlook.

We have to start somewhere. We assume that you have a reasonable grasp of
the material usually presented in a computer appreciation course or textbook.
You will find it advantageous to have access to a computer with Algol 68 facili-
ties; but we shall not assume any previous programming experience. Indeed, in
Some respects, previous experience may even be harmful, because the bad habits
picked up while learning can be very persistent — and many of today’s bad
habits were the standard methods of ten years ago.

If everything in this paragraph makes sense to you, you know enough to
read this book. If some concepts are unfamiliar, or only hazily remembered,
you should do some preliminary reading; see, for example ‘Using Computers’, by
B. L. Meek and S. Fairthorne (Ellis Horwood, 1977). A computer is controlled
by a program, which guides the computer in processing information (data
processing). The information is transferred into and out of the computer by
means of peripherals, such as card readers and tape readers for input, and line-
printers for output. Information may also be transput (input or output) via
backing store, such as magnetic tapes, discs or drums. For real time or online
work, transput may be to a teletype terminal or to a visual display unit. The
hardware of a computer system comprises the computer itself together with its
storage devices and peripherals. The software comprises the operating system

16 Introduction

and all the programs, such as assemblers, loaders and compilers, needed to make
the computer usable. The computer contains at least one central processing unit
(consisting of a control unit and an arithmetic unit), and a certain amount
(perhaps 256K words) of core storage or other memory. The memory is divided
into words (storage locations, memory cells), each word having an address. Each
word contains a certain amount of information, perhaps 24 bits; the information
may, for example, be a number (an integer or a floating point number, usually)
or part of a number, expressed in binary notation, or some characters, or an
address, or an instruction. It is not usually possible to determine which of these
sorts of information a given bit pattern represents. To solve a computing
problem, you must write a program and appropriate job control, which may give
the operating system such information as your identification, the files to be used
for transput, and the amount of storage your program will need. Your program
will be written in some language, either low level (conforming closely to the
machine code of the computer) or high level (corresponding more to some
mathematical or logical notation). A high-level language is translated (compiled)
automatically into machine code by its compiler; it will almost certainly provide
you with facilities for expressions, loops, conditional branches (jumps), sub-
routines (functions, procedures, routines) and transput, and it should be much
easier to test and debug programs than in low-level languages.
Now read on . . .

0.2 HIGH-LEVEL LANGUAGES

The early history of high-level languages is very confused, with every computer
installation developing its own ‘autocode’, each having features pirated from
earlier versions (on the same or different computers), features specific to a par-
ticular computer, features put in at the whim of the local expert, and so on. Out
of the confusion, there emerged three high-level languages which gained general
acceptance throughout the computing world, and which indeed are still (regret-
tably, perhaps) prevalent today, namely Fortran, Algol 60 and Cobol.

Fortran (FORmula TRANslator) was originally developed by IBM for their
own computers, but it proved sufficiently popular that nearly every computer
possesses a compiler for it. (One of the advantages of high-level languages is that,
if the language is reasonably machine independent, it may be possible to write
compilers for the same language on different machines, thus greatly easing the
problems of transferring programs from one machine to another.) Fortran is
(supposedly) an easy language to learn, and it is possible on most computers to
compile it into very efficient machine code. It provides for very easy evaluation
of formulas, fairly easy construction of programs using loops and conditions,
and rather rudimentary storage control, transput and subroutines, all in a form
which is somewhat similar to ordinary algebra. It is still very widely used by
engineers and scientists for whom efficient evaluation of formulas is a para-
mount consideration.

