HOW TO
PROGRAM

H. M. Deitel / P. J. Deitel

C How to Program

H. M. Deitel

Nova University
Deitel and Associates

P. J. Deitel

Deitel and Associates

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Deitel, Harvey M.
C how to program / H.M. Deitel, P.J. Deitel.
p. cm. .

Includes bibliographical references and index.

ISBN 0-13-118043-6

1. C (Computer program language) L Deitel, Paul J. II. Tide.
QA76.73.C15D44 1992
005.13'3-dc20 91-46289

CIP

Acquisitions editor: Marcia Horton

Editorial production/supervisor: Kathleen Schiaparelli
Cover design: Wanda Lubelska

Prepress buyer: Linda Behrens

Manufacturing buyer: Dave Dickey

Supplements editor: Alice Dworkin

Editorial assistant: Diana Penha

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include
the research, development, and testing of the theory and programs in the book to determine their effectiveness.
The authors and publisher make no warranty of any kind, expressed or implied, with regard to these programs or
the documentation contained in this book. The authors and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of
these programs.

=2A= © 1992 by Prentice-Hall, Inc.
= A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission
in writing from the publisher.

UNIX is a registered trademark of AT&T.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Prentice Hall was aware of the trademarks
claim, the designators have been printed in initial caps or all caps.

Printed in the United States of America

109 .87 6 5 4:3 2

ISBN 0-13-118043-b

Prentice-Hall Intemational (UK) Limited, London
Prentice-Hall of Australia Pry. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster of Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Lida., Rio de Janerio

To

To

Dr. Abraham Fischler, President of Nova University and to
Dr. Edward Simco, Dean of the Nova University Center for Computer and
Information Sciences

For their vision of an institution for advanced scientific and computer science
education and research in South Florida, and for their indefatigable efforts in
realizing that vision in this young university.

H MDD,

My teachers at Lawrenceville and M .I.T.

For instilling in me a love of learning and writing.

PoJsD,

Preface

Welcome to C! This book is by an old guy and a young guy. The old guy (HMD;
Massachuseits Institute of Technology 1967) has been programming and/or teaching
programming for more than 30 years. The young guy (PJD; MIT 1991) has been pro-
gramming for a dozen years and has caught the teaching and writing “bug.” The old
guy programs and teaches from experience. The young guy programs from an inex-
haustible reserve of energy. The old guy wants clarity. The young guy wants perfor-
mance. The old guy appreciates elegance and beauty. The young guy wants results. We
got together to produce a book we hope you will find informative, interesting, and en-
tertaining.

In most educational environments, C is taught to people who already know how
to program. Many educators believe that the complexity of C, and a number of other
difficulties, make C unworthy for a first programming course—precisely the target
course for this book. So why did we write this text?

C has in fact become the systems implementation language of choice in industry,
and there is good reason to believe that its object-oriented variant, C++, will emerge
as the dominant language of the mid-to-late 1990s. Harvey Deitel has been teaching
Pascal in university environments for 13 years with an emphasis on developing clearly
written, well-structured programs. Much of what is taught in an introductory Pascal
course sequence is the basic principles of structured programming. We have presented
this material exactly the way HMD has done in his university courses. There are some
pitfalls, but where these occur, we point them out and explain procedures for dealing
with them effectively. Our experience has been that students handle the course in
about the same manner as they handle Pascal. There is one noticeable difference
though: The students are highly motivated by the fact that they are learning a lan-
guage that will be immediately useful to them as they leave the university environ-
ment. This increases their enthusiasm for the material—a big help when you consider
that C is considerably more difficult to learn.

Our goal was clear: Produce a programming textbook using C for introductory
university-level courses in computer programming for students with little or no pro-
gramming experience. But produce a book that also offers the rigorous treatment of
theory and practice demanded by traditional C programming courses. To meet these
goals, we produced a book larger than other C texts—this because our text also pa-
tiently teaches structured programming principles. Approximately 1000 students have
studied this material in our courses.

The book contains a rich collection of examples, exercises, and projects drawn
from many fields to provide the student with a chance to solve interesting real-world
problems.

The book concentrates on the principles of good software engincering and stresses
program clarity through use of the structured programming methodology. We avoid the
use of arcane terminology and syntax specifications in favor of teaching by example.

Xix

XX C HOW TO PROGRAM PREFACE

Among the pedagogical devices of this text are the use of complete programs and
sample outputs to demonstrate the concepts being discussed; a set of objectives and an
outline at the beginning of every chapter; common programming errors (CPEs) and
good programming practices (GPPs) enumerated throughout each chapter and summa-
rized at the end of each chapter; summary and terminology sections in each chapter;
self-review questions and answers in each chapter; and the richest collection of exer-
cises in any C book. An instructor’s manual is available on IBM PC format disks and
Macintosh format disks with all the programs in the main text and with answers to all
exercises at the end of each chapter. The exercises range from simple recall questions
to lengthy programming problems to major projects. Instructors requiring substantial
term projects of their students will find many appropriate problems listed in the exer-
cises for Chapters 5 through 15. We have put a great deal of effort into the exercises
to enhance the value of this course for the student. The programs in the text were
tested on ANSI C-compliant compilers on a Sun SPARCstation, Apple Macintosh
(Think C), IBM PC (Turbo C, Turbo C++, and Borland C++), and DEC VAX/VMS
(VAX C).

This text specifically follows the ANSI C standard. Many features of ANSI C
will not work with pre-ANSI C versions. See the reference manuals for your particular
system for more details about the language, or obtain a copy of ANSI document
X3.159-1989, “American National Standard for Information Systems—Programming
Language—C,” from the American National Standards Institute, 1430 Broadway, New
York, New York 10018.

About this Book

This book is loaded with features to help the student learn.

Objectives

Each chapter begins with a statement of learning objectives. This tells the student
what to expect and gives the student a chance, after reading the chapter, to determine if
he or she has, in fact, met these objectives. It is a confidence builder and a source of
positive reinforcement.

Quotations

The learning objectives are followed by a series of quotations. Some are humorous,
some are philosophical, and some offer interesting insights. Our students have told us
that they enjoy relating the quotes to the chapter material.

Outline

The chapter outline helps the student approach the material in top-down fashion. This,
too, helps students anticipate what is to come and set a responsible pace.

PREFACE C HOW TO PROGRAM xxi

Sections

Each chapter is organized into small sections, that address key areas. C features are
presented in the context of complete, working C programs. Each program is followed
by a window containing the output produced when the program is run. This enables
the student to confirm that the programs run as expected. Relating outputs back to the
program statements that produce the outputs is an excellent way to learn and reinforce
concepts. Our programs are designed to exercise the diverse features of C. Reading the
book carefully is much like entering and running these programs on a computer.

Illustrations

An abundance of line drawings and charts is included. The discussion of structured
flowcharting, which helps students appreciate the use of control structures and struc-
tured programming, features numerous carefully drawn flowcharts. The chapter on data
structures uses abundant line drawings to illustrate the creation and maintenance of
important data structures such as linked lists, queues, stacks, and binary trees.

Helpful Design Elements

We have included four design elements to help students focus on important aspects of
program development, testing and debugging, performance, and portability. We high-
light scores of these in the form of Good Programming Practices (GPPs), Common
Programming Errors (CPEs), Performance Tips (PERFs), and Portability Tips
(PORTs).

Good Programming Practices (GPPs)

Good programming practices are highlighted it in the text with our GPP design ele-
ment. This calls the student’s attention to techniques that help produce better pro-
grams. These GPPs represent the best we have been able to glean from a combined
four decades of programming experience.

Common Programming Errors (CPEs)

Students learning a language—especially in their first programming course—tend to
make certain common errors. Focusing the students’ attention on these common pro-
gramming errors is an enormous help. It also helps reduce the long lines outside in-
structors’ offices during office hours!

Performance Enhancement Tips (PERFs)

We find that writing clear and understandable programs is by far the most important
goal for a first programming course. But students want to write the program that runs
the fastest, uses the least memory, requires the smallest number of keystrokes, or daz-
zles in some other nifty way. Students really care about performance. They want to
know what they can do to “turbo charge” their programs. So we have include
Performance Tips (PERFs) to highlight opportunities for improving program perfor-
marnce.

xxii CHOW TO PROGRAM PREFACE

Portability Tips (PORTs)

Software development has become complex and enormously expensive. Organizations
that develop software must often produce versions customized to a variety of comput-
ers and operating systems. So there is a strong emphasis today on portability, i.e., on
producing software that will run on many different computer systems without change.
Many people tout C as the best language for developing portable software. Some peo-
ple assume that if they implement an application in C, the application will automati-
cally be portable. This is simply not the case. Achieving portability requires careful
and cautious design. There are many pitfalls. The ANSI Standard C document itself
lists 11 pages of potential difficulties. We include numerous Portability Tips
(PORTSs). We have combined our own experience in building portable software with a
careful study of the ANSI standard section on portability, as well as two excellent
books on portability (see references Ja89 and Ra90 at the end of Chapter 1).

Summary

Each of our chapters ends with a number of additional pedagogical devices. We pre-
sent a detailed summary of the chapter in bullet-list fashion. This helps the students
review and reinforce key concepts,.

Terminology

We include a Terminology section with an alphabetized list of the important terms de-
fined in the chapter. Again, further confirmation. Then we summarize the GPPs, CPEs,
PERFs, and PORTs.

Self-Review Exercises

Extensive Self-Review Exercises with complete answers are included for self-study.
This gives the student a chance to build confidence with the material and prepare to
attempt the regular exercises.

Exercises

Each chapter concludes with a substantial set of exercises spanning the range from
simple recall of important terminology and concepts, to writing individual C state-
ments, to writing small portions of C functions, to writing complete C functions and
programs, to writing major term projects. The large number of exercises enables in-
structors to tailor their course to the unique needs of their audiences and to vary
course assignments each semester. Instructors can use these exercises to form home-
work assignments, short quizzes, and major examinations. The text for the exercises is
included on the IBM-PC-format and Apple-Macintosh-format disks available to in-
structors through their Prentice-Hall representatives.

A Tour of the Book

Chapter 1, “Introduction,” discusses what computers are, how they work, and how
they are programmed. It introduces the notion of structured programming and explains

PREFACE C HOW TO PROGRAM XxXxiii

why this set of techniques has fostered a revolution in the way programs are written.
The chapter gives a brief history of the development of programming languages from
machine languages, to assembly languages, to high-level languages. The origin of the
C programming language is discussed. The chapter includes an introduction to the C
programming environment.

Chapter 2, “Introduction to C Programming,” gives a concise introduction to
writing C programs. A detailed treatment of decision making and arithmetic operations
in C is presented. After studying this chapter, the student will understand how to
write simple, but complete, C programs.

Chapter 3, “Structured Programming,” is probably the most important chapter in
the text, especially for the serious student of computer science. It introduces the notion
of algorithms (procedures) for solving problems. It explains the importance of struc-
tured programming in producing programs that are understandable, debuggable, main-
tainable, and more likely to work properly on the first try. It introduces the fundamen-
tal control structures of structured programming, namely the sequence, selection (i f
and if/else), and repetition (while) structures. It explains the technique of top-
down, stepwise refinement that is critical to the production of properly structured pro-
grams. It presents two program design aids, namely structured flowcharting and struc-
tured pseudocode. The methods and approaches used in Chapter 3 are applicable to
structured programming in any programming language, not just C. This chapter helps
the student develop good programming habits in preparation for dealing with the more
substantial programming tasks in the remainder of the text.

Chapter 4, “Program Control,” refines the notions of structured programming and
introduces additional control structures. It examines repetition in detail, and compares
the alternatives of counter-controlled loops and sentinel-controlled loops. The for
structure is introduced as a convenient means for implementing counter-controlled
loops. The switch selection structure and the do/while repetition structure are
presented. The chapter concludes with a discussion of logical operators.

Chapter 5, “Functions,” discusses the design and construction of program mod-
ules. C includes standard library functions, programmer-defined functions, recursion,
and call-by-value capabilities. The techniques presented in Chapter 5 are essential to
the production and appreciation of properly structured programs, especially the kinds
of larger programs and software that system programmers and application programmers
are likely to develop in real-world applications. The “divide and conquer” strategy is
presented as an effective means for solving complex problems; functions enable the
programmer to divide complex programs into simpler interacting components. Students
enjoy the treatment of random numbers and simulation, and they appreciate the discus-
sion of the dice game craps which makes elegant use of control structures. The exten-
sive collection of 39 cxercises at the end of the chapter includes several classical re-
cursion problems such as the Towers of Hanoi.

Chapter 6, “Arrays,” discusses the structuring of data into arrays, or groups, of re-
lated data items of the same type. The chapter presents numerous examples of both
single-subscripted arrays and double-subscripted arrays. It is widely recognized that
structuring data is just as important as using control structures in the development of
properly structured programs. Examples in the chapter investigate various common ar-

XXiv CHOW TO PROGRAM PREFACE

ray manipulations, printing histograms, sorting data, passing arrays to functions, and
an introduction to the field of survey data analysis. The end-of-chapter exercises in-
clude an especially large selection of interesting and challenging problems. These in-
clude improved sorting techniques, the design of an airline reservations system, an in-
troduction to the concept of turtle graphics (made famous in the LOGO language), and
the Knight’s Tour and Eight Queens problems that introduce the notions of heuristic
programming so widely employed in the field of artificial intelligence.

Chapter 7, “Pointers,” presents one of the most powerful features of the C lan-
guage. The chapter provides detailed explanations of pointer operators, call by refer-
ence, pointer expressions, pointer arithmetic, the relationship between pointers and ar-
rays, arrays of pointers, and pointers to functions. The chapter exercises include a sim-
ulation of the classic race between the tortoise and the hare, and card shuffling and
dealing algorithms. A special section entitled “Building Your Own Computer” is also
included. This section explains the notion of machine language programming and pro-
ceeds with a project involving the design and implementation of a computer simulator
that allows the reader to write and run machine language programs. This unique feature
of the text will be especially useful to the reader who wants to understand how com-
puters really work. Our students enjoy this project and often implement substantial
enhancements.

Chapter 8, “Characters and Strings,” deals with the fundamentals of processing
nonnumeric data. The chapter includes an extremely detailed walkthrough of the char-
acter and string processing functions available in C’s libraries. The techniques dis-
cussed here are widely used in building word processors, page layout and typesetting
software, and text-processing applications. The chapter includes an interesting collec-
tion of 33 exercises that explore text-processing applications. The student will enjoy
the exercises on writing limericks, writing random poetry, converting English to pig
Latin, generating scven-letter words that are equivalent to a given telephone number,
text justification, check protection, writing a check amount in words, generating Morse
Code, metric conversions, and dunning letters. The last exercise challenges the student
to use a computerized dictionary to create a crossword puzzle generator!

Chapter 9, “Formatted Input/Output,” presents all the powerful formatting capa-
bilities of print £ and scanf. We discuss print £’s output formatting capabilities
such as rounding floating point values to a given number of decimal places, aligning
columns of numbers, right justification and left justification, insertion of literal infor-
mation, forcing a plus sign, printing leading zeros, using exponential notation, using
octal and hexadecimal numbers, and controlling field widths and precisions. We dis-
cuss all of print £’s escape sequences for cursor movement, printing special charac-
ters, and causing an audible alert. We examine all of scan£’s input formatting capa-
bilities including inputting specific types of data and skipping specific characters in
an input stream. We discuss all of scan£f’s conversion specifiers for reading decimal,
octal, hexadecimal, floating point, character, and string values. We discuss scanning
inputs to match (or not match) the characters in a scan set. The chapter exercises test
virtually all of C’s formatted input/output capabilities.

Chapter 10, “Structures, Unions, Bit Manipulations, and Enumerations,” presents
a number of important features. Structures are like records in Pascal and other lan-

PREFACE C HOW TO PROGRAM XXV

guages—they group data items of various types. Structures are used in Chapter 11 to
form files consisting of records of information. Structures are used in conjunction with
pointers and dynamic memory allocation in Chapter 12 to form dynamic data struc-
tures such as linked lists, queues, stacks, and trees. Unions enable an area of memory
to be used for different types of data at different times; such sharing can reduce a pro-
gram’s memory requirements or secondary storage requirements. Enumerations provide
a convenient means of defining useful symbolic constants; this helps make programs
more self-documenting. C’s powerful bit manipulation capabilities enable programmers
to write programs that exercise lower-level hardware capabilities . This helps programs
process bit strings, set individual bits on or off, and store information more compactly.
Such capabilities, often found only in low-level assembly languages, are valued by
programmers writing system software such as operating systems and networking soft-
ware. A feature of the chapter is its revised, high-performance card shuffling and deal-
ing simulation. This is an excellent opportunity for the instructor to emphasize the
quality of algorithms.

Chapter 11, “File Processing,” discusses the techniques used to process text files
with sequential access and random access. The chapter begins with an introduction to
the data hierarchy from bits, to bytes, to fields, to records, to files. Next, C’s view of
files and streams is presented. Sequential access files are discussed using a series of
three programs that show how to open and close files, how to store data sequentially
in a file, and how to read data sequentially from a file. Random access files are dis-
cussed using a series of four programs that show how to sequentially create a file for
random access, how to read and write data to a file with random access, and how to
read data sequentially from a randomly accessed file. The fourth random access pro-
gram combines many of the techniques of accessing files both sequentially and ran-
domly into a complete transaction processing program. Our students in our industrial
seminars tell us that after studying this material on file processing, they were able to
produce substantial file-processing programs that were immediately useful in their or-
ganizations.

Chapter 12, “Data Structures,” discusses the techniques used to create dynamic
data structures. The chapter begins with discussions of self-referential structures and
dynamic memory allocation. The chapter proceeds with a discussion of how to create
and maintain various dynamic data structures including linked lists, queues (or wait-
ing lines), stacks, and trees. For each type of data structure, we present complete,
working programs and show sample outputs. Chapter 12 helps the student truly master
pointers. The chapter includes abundant examples using indirection and double indi-
rection—a particularly difficult concept. One problem when working with pointers is
that students have trouble visualizing the data structures and how their nodes are
linked together. So we have included a large number of illustrations that show not
only the actual links, but the sequence in which they are created. The binary tree cx-
ample is a superb capstone for the study of pointers and dynamic data structures. This
example creates a binary tree, enforces duplicate elimination, and introduces preorder,
inorder, and postorder recursive tree traversals. Students have a real sense of accom-
plishment when they study and implement this example. They particularly appreciate
seeing that the inorder traversal prints the node values in sorted order. The chapter in-

xxvi CHOW TO PROGRAM ILLUSTRATIONS

cludes a substantial collection of exercises. A highlight of the chapter is the introduc-
tion to compiling via the study of infix notation and postfix notation. The exercises
walk the student through the development of an infix-to-postfix-conversion program
and a postfix-expression-evaluation program. Some of our students modify the postfix
evaluation algorithm to generate the machine language code a compiler would typi-
cally produce. The students place this code in a file (using the techniques of Chapter
11) and then actually run their machine language programs on the software simulators
they built in the exercises of Chapter 7!

Chapter 13, “The Preprocessor,” provides detailed discussions of the preprocessor
directives. The chapter includes more complete information on the #include direc-
tive that causes a copy of a specified file to be included in place of the directive before
the file is compiled, and the #def ine directive that creates symbolic constants and
macros. The chapter explains conditional compilation for enabling the programmer to
control the execution of preprocessor directives, and the compilation of program code.
The # operator that converts its operand to a string and the ## operator that concate-
nates two tokens are discussed. The five predefined symbolic constants (__LINE__,
__FILE , DATE_ ,_ TIME_ ,and__ STDC__) are presented. Finally, macro
assert of the assert . h header is discussed. assert is valuable in program testing,
debugging, verification, and validation.

Chapter 14, “Advanced Topics,” presents several advanced topics not ordinarily
covered in introductory courses. Section 14.2 shows how to redirect input to a pro-
gram to come from a file, redirect output from a program to be placed in a file, redirect
the output of one program to be the input of another program (piping), and append the
output of a program to an existing file. Section 14.3 discusses how to develop func-
tions that use variable-length argument lists. Section 14.4 shows how command-line
arguments can be passed to function main, and used in a program. Section 14.5 dis-
cusses compiling programs that exist in multiple files. Section 14.6 discusses register-
ing functions with atexit to be executed at program termination, and terminating
program execution with function exit. Section 14.7 discusses the const and
volatile type qualifiers. Section 14.8 shows how to specify the type of a numeric
constant using the integer and floating point suffixes. Section 14.9 explains binary
files and the use of temporary files. Section 14.10 shows how to use signal handling
library to trap unexpected events. Section 14.11 discusses the creation and use of dy-
namic arrays with calloc and realloc.

We are pleased to include Chapter 15, “Object-Oriented Programming and C++.”
There is a revolution occurring in software engineering today. Object-oriented pro-
gramming (OOP) gives us an entirely new way to view the process of designing and
building software. It offers us the opportunity for software reusability instead of con-
stantly “reinventing the wheel.” With OOP, organizations are discovering that they
can substantially increase productivity. Our original goal was to write a brief introduc-
tion to C++. As we wrote the chapter, however, we saw a chance to offer computer
science students a major opportunity to appreciate OOP early in their education. So
we decided to present a much more substantial treatment. Because of time constraints,
many courses will not be able to cover this chapter in depth, if at all. Regardless, stu-
dents will have the material available in the same form as we presented C—a friendly

PREFACE C HOW TO PROGRAM XxXVii

approach with lots of learning aids and working programs. The chapter treats both ma-
jor areas for which C++ was intended—enhancing C and supporting OOP. Among the
C enhancements we discuss are single-line comments, local declarations, C++ stream-
oriented input/output, inline functions, reference parameters, default arguments, and
C++-style dynamic memory allocation with the new and delete operators. We then
proceed with a discussion of object-oriented programming in C++. We discuss data
abstraction, information hiding, classes, objects, software reusability with class li-
braries, the scope resolution operator, accessing class members, controlling access to
data members and member functions, friend functions, constructor functions, destructor
functions, inheritance, derived classes, operator overloading, function overloading,
polymorphism, and virtual functions. A detailed case study on software reusability us-
ing C++ and object-oricnted programming is included. The case study first converts
our list processing program of Chapter 12 to C++ format. Then the program is encap-
sulated to form class 1istclass. We instantiate an object of that class and show
that the object performs properly. Then we use inheritance to form derived classes for
stacks and queues, instantiate objects of these classes, and show that these objects
function properly. The reader will discover that Chapter 15 presents a solid treatment
of C++ and OOP—much more than might be expected in a C textbook. We have
loaded the chapter with C++ programs, execution outputs, and self-review exercises
and answers, so even the student who does not have access to a C++ compiler will be
able to learn a great deal. The exercises include some particularly challenging prob-
lems: using stackclass to create an OOP program implementing infix-to-postfix
conversion and postfix evaluation algorithms, defining a string class, using OOP to
develop a discrete-event queueing simulation that models the operation of a highway
toll plaza, and using OOP to develop a simulation of the reader’s favorite sport. The
chapter includes extensive references for further study. The chapter concludes with an
appendix that provides resources for the reader interested in further exploration of
C++ and OOP. The appendix includes names and addresses for the Object
Management Group—an industry consortium devoted to encouraging the use of OO-
based techniques, publications about C++ and OOP topics, and companies that offer
C++ products for the related OO-based languages Simula and Smalltalk, We hope our
chapter will encourage the reader to pursue further study in C++ and object-oriented
programming.

Several Appendices provide valuable reference material. In particular, we present
the C syntax summary in Appendix A; a summary of all C standard library functions
with explanations in Appendix B; a complete operator precedence and associativity
chart in Appendix C; the set of ASCII character codes in Appendix D; and a discus-
sion of the binary, octal, decimal, and hexadecimal number systems in Appendix E.

Acknowledgements

One of the great pleasures of writing a textbook is acknowledging the efforts of the
many people whose names may not appear on the cover, but without whose hard work,
cooperation, friendship, and understanding producing this text would have been im-
possible.

xxviii CHOW TO PROGRAM ILLUSTRATIONS

PJD would like to thank Professor Richard Wang of the Massachusetts Institute
of Technology for his support and understanding, and for his interesting classes in C,
UNIX, and SQL. PJD would also like to thank his Wellesley College friends Ms.
Nancy Paz and Ms. Karin Monsler, and his MIT friends Will Martinez, Tim Nieto,
Rich Wong, Mark Schaefer, Alex Hou, Goose (Brandt Casey) and last—but not
least—Spike (Cliff Stephens).

HMD wants to thank his Nova University Colleagues Ed Simco, Clovis Tondo,
Lois Simco, Ed Lieblein, Phil Adams, Raisa Szabo. Raul Salazar, Laurie Dringus,
Pattie McCormick, and Barbara Edge.

We would like to thank our friends at the Corporation for Open Systems
International (Bill Horst, David Litwack, Steve Hudson, and Linc Faurer), Informative
Stages (Don Hall), Semaphore Training (Clive Lee), and Digital Equipment
Corporation (Janet Hebert, Faye Napert, Betsy Mills, Jennie Connolly, Stephanie
Stosur Schwartz, Barbara Couturier, John Ferreira, Gretchen Forbes, Debbie Barrett
and Paul Sandore) who have made teaching this material in an industrial setting such
a joy.

We are fortunate to have been able to work on this project with a talented and
dedicated team of publishing professionals at Prentice Hall. Kathleen Schiaparelli did
a marvelous job as production editor. Diana Penha and Jaime Zampino coordinated the
complex reviewer effort on the manuscript, and were always incredibly helpful when
we needed assistance—their ebullience and good cheer are sincerely appreciated.

We would like to thank Mr. James A. Cannavino, IBM Vice President and
General Manager, Personal Systems, and Mr. Steve Ballmer, President of Microsoft
Corporation for their friendship and for a photographic moment at Fall Comdex 1991
that we will never forget.

This book happened because of the encouragement, enthusiasm, and persistence of
Marcia Horton, Vice President and Editor-in-Chief of Prentice-Hall’s Computer
Science and Engineering department. It is a great credit to Prentice-Hall that its top
executives continue their editorial responsibilities. We have always been impressed
with this, and we are grateful to be able to continue working so closely with Marcia
even as her administrative responsibilities increase.

We appreciate the efforts of our reviewers

Gene Spafford (Purdue University)

Clovis Tondo (IBM Corporation and visiting professor at Nova University)

Jeffrey Esakov (University of Pennsylvania)

Tom Slezak (University of California, Lawrence Livermore National Laboratory)

Gary A. Wilson (Gary A Wilson & Associates—UNIX/C course consulting and
instruction—and University of California Berkeley Extension)

Mike Kogan (IBM Corporation; chief architect of 32-bit OS/2 2.0)

Don Kostuch (IBM Corporation retired; now worldwide instructor in C, C++,
and object-oriented programming)

Ed Lieblein (Nova University)

John Carroll (San Diego State University)

Alan Filipski (Arizona State University)

W TO PROGRAM ILLUSTRATIONS XXix

- Greg Hidley (University of California San Diego)
- Daniel Hirschberg (University of California Irvine)
Jack Tan (University of Houston)

Richard Alpert (Boston University)

Eric Bloom (Bentley College).

e people scrutinized every aspect of the text and made dozens of valuable sugges-
for improving the accuracy and completeness of the presentation.
- The authors would like to extend a special note of thanks to Ed Lieblein, one of
world's leading authorities on software engineering, for his extraordinary review of
pter 15, "Object-Oriented Programming and C++." Dr. Lieblein is a friend and col-
e of HMD at Nova University in Ft. Lauderdale, Florida where he is Full
ofessor of Computer Science. Dr. Lieblein was previously Chief Technical Officer of
rtan Laboratories, one of the leading compiler development organizations in the
orld. Before that, he served as Director of Computer Software and Systems in the
ice of the Secretary of Defense. In that capacity, he managed the DoD Software
tiative, a special program to improve the nation's software capability for future mis-
critical systems. He initiated the Pentagon's STARS program for software tech-
gy and reusability, guided the Ada program to international standardization, and
yed an important role in establishing the Software Engineering Institute at
egie Mellon University. It is indeed a special privilege for us to be able to work
th Dr. Lieblein at Nova University.
- We would also like to extend a special note of thanks to Dr. Clovis Tondo of
M Corporation and visiting professor at Nova University. Dr. Tondo was the head
our review team. His meticulous and thorough reviews taught us much about the
eties of the C language and of teaching C properly. Dr. Tondo is the co-author of
e C Answer Book which contains answers to the exercises in—and is widely used
conjunction with—The C Programming Language, the classic book on C by
an Kernighan and Dennis Ritchie.

- This text is based on the version of C standardized through the American
National Standards Institute (ANSI) in the United States and through the
ernational Standards Organization (ISO) worldwide. We have used extensive mate-

s from the ANSI standard document with the express written permission of the
ican National Standards Institute. We sincerely appreciate the cooperation of

Clare Lynch—Director of Publications for ANSI—and her associates Kim
ock and Beth Somerville for helping us obtain the necessary publication permis-

. Figures 5.6, 8.1, 8.5, 8.12, 8.17, 8.20, 8.22, 8.30, 8.36, 9.1, 9.3, 9.6, 9.9, 9.16,
7, and 11.6, and Appendix A: C Syntax, and Appendix B: Standard Library have
2n condensed and adapted from American National Standard for Information
tems—Programming Language—C, ANSI X3.159-1989, copyright 1990 by the
erican National Standards Institute. Copies of this standard may be purchased from
he American National Standards Institute, 11 West 42nd Street, New York, NY

6.

- Last, but certainly not least, we would like to thank Barbara and Abbey Deitel,
eir love and understanding, and for their enormous efforts in helping prepare the

XXX CHOW TO PROGRAM PREFACE

manuscript. They contributed endless hours of effort; they tested every program in the
text, assisted in every phase of the manuscript preparation, and proofread every draft of
the text through to publication. Their sharp eyes prevented innumerable errors from
finding a home in the manuscript. Barbara also researched the quotes, and Abbey sug-
gested the title for the book.

We assume complete responsibility for any remaining flaws in this text. We
would greatly appreciate your comments, criticisms, corrections, and suggestions for
improving the text. Please send us your suggestions for improving and adding to our
list of GPPs, CPEs, PORTs, and PERFs. We will acknowledge all contributors in the
next edition of the book. Please address all correspondence to our email address:

deitel@world.std.com

or write to us as follows:

Harvey M. Deitel (author)

Paul J. Deitel (author)

c/o Computer Science Editor

College Book Editorial

Prentice Hall

Englewood Cliffs, New Jersey 07632

We will respond immediately.
Harvey M. Deitel
Paul J. Deitel

Preface

Chapter 1
1.1
1.2
1.3
14
1.5

1.6

1.7
1.8
1.9
1.10
151
112
1,13
1.14

Chapter 2
2.1
22
2.3
2.4
2.5
2.6

Chapter 3
5.1
32
33
34
3.5
3.6
3.7
3.8
3.9

3:10

Contents

Computing Concepts

Introduction

What Is a Computer?

Computer Organization

Batch Processing, Multiprogramming, and Timesharing
Personal Computing, Distributed Computing, and Client/Server
Computing

Machine Languages, Assembly Languages, and High-level
Languages

The History of C

The C Standard Library

Other High-level Languages

Structured Programming

The Basics of the C Environment

General Notes About C and this Book

Concurrent C

Object-Oriented Programming and C++

xix

VA WN

1

Summary « Terminology « Good Programming Practices * Self-Review
Exercises * Answers to Self-Review Exercises » Exercises * Recommended

Reading

Introduction to C Programming

Introduction

A Simple Program: Printing a Line of Text

Another Simple C Program: Adding Two Integers

Memory Concepts

Arithmetic in C

Decision Making: Equality and Relational Operators

Summary ¢ Terminology Common Programming Errors « Good
Programming Practices « Self-Review Exercises » Answers to Self-
Review Exercises « Exercises

Structured Program Development
Introduction

Algorithms

Pseudocode

Control Structures

The If Selection Structure

The If/Else Selection Structure
The While Repetition Structure
Formulating Algorithms
Top-down, Stepwise Refinement
Structured Flowcharting

23
24
24
26
30
32
34

49
50
50
51
52
2.
33
56
56
57
62

