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Preface

The aim of this book is the definition and study of the properties of the poly-
hedral compactification of the Bruhat-Tits building of a reductive group over a
local field. For consistency of presentation, I have decided to present comprehen-
sively the construction of the Bruhat-Tits building. I hope that this approach
will make this technical work more accessible.

I wish to thank M. Rapoport and U. Stuhler for their interest in this work and
for their critical commentary. Thanks also go to D. Gonzalez Afonso for her
energetic support in the translation of the German version and T. Chinburg for
remarks on the translation. I owe special thanks to P. Schneider for detailed
suggestions about how to improve an earlier version of the manuscript, and for
many helpful comments. I am convinced that I would have been unable to
submit this work without his help.

Minster, 1995 Erasmus Landvogt
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Introduction

The investigation of locally symmetric spaces can draw on different forms of
compactifications. For example, one has the compactification of W.L. Baily and
A. Borel (see [BaBo] and [S 2]) and the polyhedral compactification of A. Borel
and J.P. Serre (see [BoSe 1] and [S 1]). One can view the Bruhat-Tits building
of a reductive group over a local field as the p-adic analog of a symmetric space
(see [Ti 2] 5). Thus a natural question is to find p-adic compactifications of such
buildings which are analogs of various compactifications of symmetric spaces.

A. Borel and J.P. Serre constructed in [BoSe 2| a compactification which differs
fundamentally from any other in the classical context. To my knowledge, only
P. Gérardin has published results concerning gp-adic versions of polyhedral com-
pactifications (see [Ge]). However, Gérardin considers only the case of a split
reductive group G over a p-adic field K, and he focuses only on the set of special
points.

The object of this work is to define compactifications for an arbitrary reductive
group G over a local field K. This will be done in two steps:

1. A compactification 4 of an apartment A of the Bruhat-Tits building X(G)
will be constructed in complete analogy to the classical case (e.g. see
[AMRT]). This part of the construction follows the ideas os Gérardin,
though I will focus more closely on the connection of the topology of a
corner and combinatorial properties of the Coxeter complex.

2. In the second step, the compactification A is used as a “local model” for the
compactification of X (G). Starting from the equality X(G) = G(K)x A/ ~,
where ~ is a suitable equivalence relation (see [BT 1] §7.4), I will define
X(G) as G(K) x A/ ~*, where ~* is a natural extension of ~. If we
equip G(K) with the p-adic topology X(G) will carry the corresponding
product-quotient topology. It turns out that the topological space X(G) is

Hausdorff, compact and contractible, that X(G) = |J X(P/Ru.(P)) (‘B
Pep

denotes the set of K-parabolic subgroups of G and R,(P) the unipotent
radical of P) and that the topology on X (P/R,(P)) induced by X(G) co-
incides with the canonical building-topology.

In this global part this work differs to a high degree from [Ge] as the latter
used Chevalley lattices to define X(G), a method which can not be gen-
eralized in a suitable way. Furthermore I consider the whole Bruhat-Tits
building and not only the subset of special points.

The second purpose of this work is didactic. Many of the properties of X(G)
and some of the decomposition theorems for G(K) can only be found in the orig-
inal works by F. Bruhat and J. Tits, at least in the generality which is needed
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here. Because of the axiomatic character of these results, I did not think that
merely citing their proofs would make the constructions in this paper easier to
understand. Therefore I decided to present a nearly complete account of the
construction of X(G) and of the necessary theorems when G is a connected re-
ductive K-group and K is complete with respect to a discrete valuation. I have
refrained from presenting the axiomatic framework. To reduce the technical dif-
ficulties even further, some theorems will only be proved for the case in which
the residue class field k of K is finite. This makes it possible to consider only re-
ductive groups, so that one does not need to consider quasi-reductive groups. (In
constructing the compactification, the finiteness of k£ will be assumed anyway.)

Apart from a few exceptions, the reader should be able to follow this text without
the aid of the original works [BT 1,2]. Those properties that have not been
proved (with the exception of the proof of the commutator-rule for quasi-split
groups) are not essential for the understanding of this work.

Even though at some points of the text ad-hoc proofs would have shorted the
arguments, I decided to follow on the whole the strategy mapped out in [BT
1,2]. I hope that this approach has made the presentation more clear, and that
it will facilitate comparisons with the original texts.

To carry out the approach described above, it is necessary to copy some theorems
and proofs word-for-word from [BT 1,2]. At some other points, the ideas of
the proofs are the same, but because I have avoided such notions as ‘valuated
root data’ and ‘quasi-concave functions’ the particular phrases and/or proofs
themselves are different. To avoid making reading the quotations more difficult
than reading the proofs, quotations are given only at the beginning of each
paragraph. At the beginning of each chapter I give a detailed summary of the
contents of the chapter.



§0 Definitions and notations

In this paragraph we will give the fundamental definitions and notations used
throughout this work. Furthermore, we will present some properties of group
schemes and reductive groups.

As usual IN, Z, @, R denote the sets of natural, integral, rational and real num-
bers. By IN5o we will denote the set of positive natural numbers and by R,
the set of positive reals.

In this work all rings are assumed to be commutative and to have an identity
element 1. Ring homomorphisms should always preserve the identity elements
and all modules are assumed to be unitary. All fields are commutative.

If R is a ring, then a ring R’ together with a ring homomorphism R — R’ is
called an R-algebra. If R is an integral domain, then we will denote the quotient
field by Quot(R).

For a ring R and an R-module M, we denote by M* the dual module. If S C M
is an arbitrary subset, then we will write (S) for the submodule of M generated
by S. We abbreviate the group of R-module isomorphisms M — M as GL(M).

Let G be an abstract group, let M C G and let X be a G-set. Then we
let X = {z € X : gz = z for all g € G} and let (M) be the subgroup
of G generated by M. For A,B C G, we denote the commutator subgroup
({aba~'b"1:a € A,b € B}) by (A, B).

If H is a further group and ¢ : G — Aut(H) (= group of automorphisms of
H) is a group homomorphism, then we will write Hx ,G for the semi-direct
product of G and H with respect to ¢. If ¢ is clear in the context, then we will
abbreviate this as Hx G.

For a field K and a field extension L/K, let [L : K| be the degree of the field
extension. If moreover L/ K is Galois, then the Galois group will be denoted by
Gal(L/K). For v € Gal(L/K) and z € L, we will also write z” instead of y(z).

As usual a local field is a field which is complete with respect to a discrete
valuation and locally compact. If K is a field which is complete with respect to
the discrete valuation w : K* — R, then we let ox = {z € K : w(z) > 0} and
myg = {z € K : w(z) > 0}. Here we let K* = K\{0} and w(0) = 00 > 0. We
will denote the residue class field by the same but small Latin letter as the local
field. Finally, we will write K*" for the strict Henselization.

By [CaFr| II 7 we know that K is locally compact if and only if k is finite.

In order to make the notations more clear we will denote schemes over a field (in
particular varieties) by capital Latin letters and schemes over arbitrary rings by
capital Gothic letters. A separated, reduced scheme of finite type over a field is
called a variety.



Let R be a ring, let X be a scheme over Spec(R) (also: X an R-scheme or
X/r) and let R’ be an R-algebra. Then let X(R') be the set of morphisms
Spec(R') — X over Spec(R). We will suppress the base ring in the following as
well. For X x g R’ = X Xgpec(r) SPec(R'), we also write Xp/. Following the usual
notations from the theory of varieties we will denote I'(X g/, Ox,, ) by R'[X], if X
is an affine R-scheme and Ox,, denotes the structure sheaf of the scheme Xp:.
If 9 is a further R-scheme and f : X — 2) a morphism of R-schemes, then we
will write f* for the R-algebra homomorphism R[2)| — R[X] induced by f.

If R is a local ring and X an arbitrary R-scheme, then the special fibre of X will
be denoted by X.

0.1. Let R be a complete, discrete valuation ring with residue class field k£ and
let X be a smooth R-scheme. Since, in particular, R is Henselian, we get that
the canonical map

X(R) = X(k)(= X(k))

is surjective (see [BLR] 2.3 Prop. 5).

0.2. Let R be an integral domain, K = Quot(R) and let X be a flat, affine
R-scheme. Then the map R[X] - K ®pg R[X] is injective. If 9 is a further
affine R-scheme and if f,g : X — 2) are two morphisms of R-schemes, which
coincide on the generic fibre of X, then f = g.

Proposition 0.3. (Extension principle, see [BT 2] 1.7)

Let R be a complete, discrete valuation ring with separably closed residue class
field k and let X,9) be two affine R-schemes of finite type, where X is smooth over
R. Ifg: XxpK — Y xgrK is a morphism of K -schemes with g(X(R)) C D(R)
where K = Quot(R), then g can be extended uniquely to a morphism §: X — 9.

Proof. Since X is smooth over R, in particular flat, it follows X(R) C X(K).

Now the uniqueness follows immediately from (0.2). In order to prove the ex-
istence, it obviously suffices to show that R[X] = {f € K[X] : f(X(R)) C R}.
Here the inclusion R[X] C {f € K[X]: f(X(R)) C R} is clear.

Thus let f € K[X] with f(X(R)) C R and suppose that f ¢ R[X]. Let m be
the maximal ideal of R and let 7 be a uniformizer. Further let k = R/m be the
residue class field and choose the minimal n € IN such that =" f € R[X].
Obviously, we have n > 1 and therefore 7™ f(X(R)) C m but 7" f ¢ m. Hence
the image of 7™ f in k[X] does not vanish.

Since X is smooth, it follows from (0.1) that X(R) — X(k) is surjective. Hence
the image of 7" f vanishes on X(k), which has a dense image in X by [Bo] AG
13.3 (k is separably closed). Contradiction. a
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Supplement:

By (0.3) we obtain the following uniqueness statement:

Let R be a complete discrete valuation ring with separably closed residue class
field, let K = Quot(R), let X be an affine K-scheme and let M C X(K) be
an arbitrary subset. If there exists a smooth, affine R-scheme X of finite type
with generic fibre X and X¥(R) = M, then this is up to a unique isomorphism
uniquely determined by this data.

The distribution module of an affine scheme (see [Ja] 1.7):

Let R be a ring, let X be an affine R-scheme and let z € X(R). If I, denotes

the ideal in R[X] defining the closed immersion z : Spec(R) — X, then
Dist(X,z) := {u € R[X]* : there exists a number n € IN with u(I?*!) = 0}

is called the R-module of distributions on X with support in z.
Obviously, this construction is functorial, i.e. a morphism f : X — 2) of affine
R-schemes X,%) induces an R-module homomorphism

Dist(X,z) — Dist(), f(z))
p - pof*

for all z € X(R) (see [Ja] 1.7.2).

Proposition 0.4.

Let R be a discrete valuation ring, K = Quot(R) and let X be an irreducible,
smooth affine R-scheme with irreducible generic fibre. Furthermore, let z €
X(R). Then R[X] = {f € K[X]: u(f) € R for all u € Dist(%,z)}.

Proof. The proof can be copied word for word from [Ja] I 10.12, since the
property of being a group scheme is not needed there. O

The Weil restriction (see [BLR] 7.6):
Let R be a ring and let R’ be an R-algebra which is projective and of finite type

as an R-module. If X is an affine R’-scheme, then the functor

affine
{R-schemes } — Ens (= category of sets)

) — X(Y xr R')
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can be represented by an affine R-scheme RE (X) (see [BLR] 7.6 Theorem 4).
So we obtain the Weil restriction functor

affine N affine
R'-schemes R-schemes
k3 — RE(%)

A simple exercise in universal algebra and [BLR] 7.6 Prop. 5 show that the Weil
restriction has the following properties:

0.5. If X is an affine R’-scheme, then:
(i) If X is of finite type over R’, then RE (X) is of finite type over R.

(ii) If X is smooth over R’, then RE (%) is smooth over R.
(iii) If S is an arbitrary R-algebra and S’ := S ®g R’, then

RS (X xr §')=RE(X)xr S

Let K be a topological field. We can define on K-varieties next to the Zariski
topology a finer (in general strictly finer) topology. We will call this the K-
analytic topology, following the terminology in the cases K = R and K = C.

This topology is defined exactly in [We] App. III. Only the most important
properties will be recalled here.

0.6. For each K-variety X, there exists a unique topology on X(K) such that
the following conditions are valid:

(i) If X — AN (= N-dimensional affine space) is a closed immersion, then
the topology on X(K) is induced by the product topology on KV via
X(K) = AN(K) = KN,

(ii) If (Ui)ier is a covering of X by open, affine subvarieties, then the inclusion
Ui(K) — X(K) induces the K-analytic topology on U;(K).

(i) If f : X — Y is a morphism of K-varieties, then the induced map
f:X(K)— Y(K) is continuous with respect to the K-analytic topolo-
gies.

(iv) The K-analytic topology on X(K) is finer (in general strictly finer) than
the Zariski topology.

(v) IfY is a further K-variety, then the canonical bijection
X(K)xY(K) = (X xg Y)(K) is a homeomorphism, if X(K) x Y(K) is
equipped with the product topology.

In addition, if K is a local field, then we have:
(vi) X(K) is locally compact and
(vii) X(K) is compact, if X is complete.

6



Let R be an integral domain. Then statements like “® is an R-group scheme
with generic fibre G ...” should always mean that the group law on G is induced
by the group law on & for the case that G is a Quot(R)-group scheme.

If  and $) are two R-group schemes, then a homomorphism of R-group schemes
f:® — $ will be called an R-group homomorphism.

As usual we let G, = Spec(Z[T]) and G, = Spec(Z[T, %|). If R is a ring,
then we also write G,/ and G, g for G, Xz R and G, Xz R, respectively.
Furthermore, we let

GLn/g = Spec( BiThise « 5 dnims H(IT_,S])

and
SL,/r = Spec(R[T11,- .., Tan]/(1 — det(T3;))) -

In case that the group schemes are defined over an integral domain the following
three lemmas intend to make clear, in how far the group law, homomorphisms
etc. can be extended from the generic fibre to the whole scheme. Let R be an
integral domain and let K = Quot(R).

Lemma 0.7.
Let & and $) be two flat, affine R-group schemes. If f : & — §) is a morphism

of R-schemes which induces a K -group homomorphism & — Hx, then f is an
R-group homomorphism.

Proof. Let m: 8 x & - & and m' : § x H — §H be the group laws and let
e : Spec(R) — & and €' : Spec(R) — § be the 1-sections. Then the assertion
follows by applying (0.2) to the following diagrams:

exe X HxH Spec(R) = Spec(R)
'"l lm' and °l l’l
& —7) 9 (] —f> 9

Lemma 0.8.

Let & be a flat, affine R-scheme and let m : 8 x & — &, s : & = &
and e : Spec(R) — & be morphisms of R-schemes which make &g a K-group
scheme. Then & is an R-group scheme.

Proof. This follows immediately by applying (0.2) to the diagrams which will
be used in the definition of a group scheme (see [DG] II §1 1.1). o
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Lemma 0.9.

Let & be an affine R-group scheme. If §) is a flat, closed subscheme of & such
that $i is a K -subgroup scheme of B, then $) is an R-subgroup scheme.

Proof. Let m : & x & — & be the group law and let s : & — & be the
“inverse-morphism”. By the assumption these induce morphisms Hx X Hx —
Hx and Hx — Hi. Since §H is flat, the canonical map R[] — K[H xg K]
is injective, hence $x has a dense image in §). Therefore m and s induce
morphisms ) x $ — § and H — H. ]

Proposition 0.10.

Let R be a complete discrete valuation ring with separably closed residue class
field k and let K = Quot(R). Let & and $) be two affine R-group schemes,
suppose & has connected fibres and is smooth over R, and let fx : &g — Hk
be a K-group homomorphism. If there exists an open neighbourhood 3 of the
1-section in & and an extension of fx to an R-morphism f : U — §), then we
can extend fg uniquely to an R-group homomorphism & — §).

Proof. Since & is flat, the uniqueness follows from (0.2).
Let £ € & C &. Then it suffices to show that we have fx(g) € Og . for all
g € R[$), since R[B] = ] Og-

z€®

Since ® is connected, we obtain & = (k) - U ([Bo] AG 13.3 and 1.3).

& is smooth and R is Henselian, hence the canonical map U(R) — U(k) is
surjective (see (0.1)), i.e. there exists an element y in U(R) with z € y - L.
Obviously, the morphism yi — %, y - u = f(y) - f(u) extends the K-group
homomorphism fg. Hence f}(g) € Os,. for all g € R[$].

Finally, it follows from (0.7) that f is even an R-group homomorphism. ]

For a ring R and an affine R-group scheme & with 1-section e : Spec(R) — &,
we will abbreviate Dist(®, e) as Dist(®). By [Ja] I 7.7 we know that Dist(®) is
an associative (in general not commutative) R-algebra.

If R' is an R-algebra which is projective and of finite type as an R-module,
then an affine R’-group scheme & becomes an affine R-group scheme ’Rﬁl(@})
by applying the Weil restriction.

If R is a ring and & is a smooth R-scheme, then the identity component of &
will be denoted by ®° (see [SGA 3] Exp. VIp 3.1 ff). By [SGA 3] Exp. VIg 3.10
we know that &° can be represented by a (smooth) open R-subgroup scheme of
®. This will be denoted by &°, too.



0.11. Let R be a discrete valuation ring and let & be a flat, separated R-group
scheme of finite type with affine generic fibre. Then according to [SGA 3] Exp.
XVIII App. III Prop. 2.1 (iii) we know that & is affine.

0.12. Let R be a discrete valuation ring with residue class field k£ and let
K = Quot(R). Let &, be two affine R-group schemes of finite type and let
f:® — $ be an R-group homomorphism. If &, § are of the multiplicative type
(in the sense of [SGA 3] Exp. IX 1), then by [SGA 3| Exp. IX 2.9 the following
assertions are equivalent:

(i) f is a monomorphism;
(ii) the K-group homomorphism &x — i induced by f is a monomorphism;

(iii) the k-group homomorphism &; — $; induced by f is a monomorphism.

Proposition 0.13.

Let R be a complete discrete valuation ring with residue class field k and let &, $
be two affine R-group schemes where & s of finite type and $ is smooth. - If®
is of the multiplicative type, then every k-group homomorphism f : & — § can
be extended to an R-group homomorphism f : & — §.

Proof. By [SGA 3] Exp. XI 4.2 the functor
S HomS—groups(Q,SaﬁS)

can be represented by a smooth R-group scheme $omp(®, 5). Hence by (0.1)
the canonical map Homg(8, H)(R) — Homg(®, H)(k) is surjective and therefore
there exists an R-group homomorphism f : & — §) extending f. ]

0.14. Let R be a ring and let M be a free R-module of finite type. Then the
functor

affine .
{ R-schemes } — Ab (= category of abelian groups)

Spec R’ — R ®rM

can be represented by a smooth, affine R-group scheme M of finite type (see
[DG] II.1 2.1).
The underlying scheme will be called the canonical R-scheme associated with M.

9



Root systems and Coxeter complexes (see [Bou 1]):

0.15. Let X be a metric space with metric d. For z € X and € > 0, we let
Be(z) ={y € X : d(x,y) <e}.

If A is a real affine space, then we denote by Aff(A) the group of affine bijections
A — A. For z,y € A, we denote by |z,y[ and [z, y] the open and closed segment
in A with end-points = and y, respectively. For an arbitrary subset U C A, we

denote by U the topological closure of U in A and by T the interior of U.

Let ® be a root system in a finite-dimensional IR-vector space V. A root a € ®
is called divisible, if %a € ®. ,

For an arbitrary subset ¥ C &, we let "¢ = {a € U : la ¢ U}. If a,b € &,
then we let (a,b) = {pa +gb: p,q € N5o} N &.

A subset ¥ C ® is called closed, if (a,b) C ¥ for all a,b € ¥. If in addition ¥
lies in an open half-space of V, then ¥ is called positively closed.

Let ¥ C ® be a positively closed subset. A root a € ¥ is called eztremal, if the
intersection of R4 a with any system of generators of the convex cone generated
by ¥ is non-empty. An arbitrary total ordering of ¥"*¢ will be called simply an
ordering of ¥. An ordering of ¥ is called good, if every a € ¥™*¢ is an extremal
root for the set of all roots which are greater than a. (See [BT 1] 1.3.15 for the
existence of good orderings.) In order to distinguish these (total) orderings from
orderings of & with respect to a basis, we will call the latter ones orders on ®.

Now let @ be a root system in V*. Then ® defines a Coxeter complex ¥ in
V such that its faces are the equivalence classes with respect to the following
equivalence relation ~:

For z,y € V, we have z ~ y if and only if for all a € ®, the following condition
is valid: a(z) and a(y) have the same sign or are both equal to zero.

According to [Bou 1] VI 1.5 there exists a canonical bijection between the set of
chambers in ¥ and the set of bases of ®. Let C' € X be a chamber and let A(C)
be the basis of ® defined by it. Obviously, there exists a bijection

A: {FEXL:FCC} — P(A(C)) = set of all subsets of A(C)).

F — A(F)={a€ A(C):dr > 0}

If 6 C A, then A~1(8) will also be denoted by Fj.

Since we will consider finite and infinite (affine) Coxeter complexes simultane-
ously, the word “vector” (in words like “vector face”, “vector chamber” etc.)
will indicate in paragraphs in which both types arise that we consider the finite
Coxeter complex.

10



Algebraic and reductive groups (see [Bo|, [BoTi] and [Hul):
Let K be a field and let G be a K-group. As usual we denote by

X*(G) the group of characters;

X.(G) the group of 1-parameter subgroups;

X%(G) the group of K-rational characters;
D(G) the derived group;

C(G) the connected centre;
R(G) the radical;
R,(G) the unipotent radical.

If HC G is a closed subgroup, then we will denote by Ng(H) and Zg(H)
the normalizer and the centralizer of H in G, respectively. For closed subgroups
H,,...,H, C G, we denote by (H1, ..., H,) the closed subgroup of G generated
by Hy,...,H, in G. If A, B C G are closed subgroups, then we will abbreviate
the commutator of A and B as (A4, B).

0.16. A reductive K-group is called split over K (or K-split), if there is a
maximal torus which is defined over K and splits over K (see [Bo] 18.7).

A reductive K-group is called quasi-split over K (or K -quasi-split), if there is a
Borel subgroup defined over K. In this case the centralizer of a maximal K-split
torus is K-Levi subgroup of a Borel subgroup and therefore equals a maximal
torus (see [Bo] 20.5 and 20.6 (iii)).

Now let G be a reductive K-group, let S be a maximal K-split torus in G and
let & = ®(G, S, K) be the root system of G with respect to S (see [Bo] V 21.1,
there denoted by x®(G)). If g is the Lie algebra of G, Ad : G — GL(g) the
adjoint representation and a € ®, then we let

8. ={X €g:(Ad s)(X) = a(s)X for all s € S}.

0.17. By use of [Bo] 21.9 and 14.5 (*) we obtain the following characterization
of the root groups:

(i) If @ € ®, then there exists a unique closed, connected, unipotent K-
subgroup U, of G which is normalized by Z(S) and has Lie algebra g, +g24
(if 2a ¢ ®, then we let go, = 0).

(ii) If ¥ C ® is positively closed, then there exists a unique closed, connected,
unipotent K-subgroup Uy of G which is normalized by Z5(S) and has Lie

algebra Y g,.
acvy
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(iii) If ¥ C & is positively closed, then the product morphism

II va—Ue
agWyred

is an isomorphism of K-varieties for each ordering of ¥.

(iv) Let a,b € ® and suppose that a and b are linear independent. Then (a,b)
is positively closed and we have

(Ua, Us) C Uta,p)-

Here Uy = {1} (see (ii)).

If ¥ C @ is positively closed, then we let Gy = (Uy,U_w, Z25(S)). For an order
on ®, the groups Ug+ and Uz~ will also be denoted by Ut and U, respectively.
If ¥ denotes the Coxeter complex in X,.(S) ®z R defined by ® and if C € ¥ is
a chamber, then C defines an order on ®. The groups Ug+ and Ug- will also
be denoted by Ub" and U, respectively.

0.18. According to [BoTi] 5.15 we have the following decompositon of G(K):

Let C,C’' € ¥ be two chambers. Then:

(i) G(K)=U&(K)Ng(S)(K)UE (K).

(ii) For n,n’ € Ng(S), we have n = n’ if and only if the double cosets U;nUZ,
and U n'Ug, are equal.

(iii) UGUG N NG(S) = {1}.

Lemma 0.19.

Let a € ® and u € Uy(K). Then Ng(S)(K) N U_o(K)uU_o(K) =: {m(u)}
consits of one element. For u # 1, the element m(u) induces the reflection r,

in X.(S) and in X*(S) (see [BoTi] §5).

Proof. There exists at most one n € Ng(S)(K) with u € U_,(K)nU_,(K) by
(0.18). On the other hand, by applying (0.18) to the subgroup of G generated
by U_,, U, and Z¢(S) the existence is clear, and the supplement also holds. O

0.20. Let A C ® be a basis of ® and let § C A. Then (#) denotes the set of all

roots in @ which are linear combinations of roots in 6. If we let Sg = ([ ker a)°,
ach

then Z¢(Se) normalizes the group Us+\(9), and Py := Zg(Se)Usg+\(e) is a

parabolic K-subgroup of G (see [Bo] 21.11). Py is called the standard parabolic

K -subgroup of type 6.
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