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Preface

Every textbook should have a definable purpose and a definable point
of view. This particular text is intended to help students of engineering
learn how to use the techniques of mathematics as a professional tool.
The point of view adopted in this text, therefore, is that mathematics
is an engineer’s tool. The authors are quite well aware that there are
other values of mathematics. They are aware that mathematics is a
philosophy; it is a metaphysic; it is an art; and it is logic. However,
these values of mathematics, important and worthwhile as they may
be, are definitely subordinate to the central theme of this text, namely,
that mathematics is an engineer’s tool.

The authors are also perfectly well aware that there are many
functions and many techniques which are not even hinted at in this
volume. They have been omitted intentionally because experience has
shown that these functions and techniques are not ordinarily en-
countered by the beginning engineer and engineering technician. The
authors feel very strongly that the classroom time and textbook space
can much more properly be devoted to the building up of skills in
 the use of more elementary techniques rather than to discussing the

- more theoretical aspects of mathematics, which will probably not be
used until the student has developed considerable experience in his
chosen field.

The text is the outgrowth of years of classwork with students at
Wentworth Institute. These men are high school graduates who have
. had at least a year or two of algebra. While they expect to enter
industry and work in intimate accord with artisans, they must also be
at ease in the more precise atmosphere of engineering. Therefore, the
authors have given a traditional and thorough treatment of basic
algebra and trigonometry and have stressed the applications of these
principles to a wide range of specific engineering situations. The cal-
culus section is limited to those techniques of calculus with which the
engineering student and the beginning young engineer are likely to be
concerned. The more profound and subtle theory and mathematical
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vi Preface

thinking involved in the subject of limits, for example, have been
intentionally left out.

The topics have been broken down into eight teaching units and
three appendixes, as follows:

*Unit I Slide Rule and Review of Arithmetic and Geometry
* Unit II Basic Algebra
Unit IIT Advanced Algebra and Logarithms
Unit IV Introduction to Analytical Trigonometry
* Unit V Numerical Trigonometry of the Right Triangle
Unit VI Oblique Triangles and Applications of Numerical
Trigonometry
Unit VII Analytical Trigonometry
Unit VIII Introduction to Calculus
* Appendix A Computation Aids and Approximations
* Appendix B Formulas of Geometry and Mensuration
* Appendix C  Solution of Higher-degree Equations

The starred units can be used in any order. Unit I is a mature review
of arithmetic and geometry built around a study of the slide rule.

Unit II is a rathier thorough review of basic algebra. As a review,
it has been handled somewhat differently from a unit intended to
introduce algebra.

Unit IIT continues where Unit II leaves off. This section is not a
review and assumes that the student is studying these topics for the
first time.

Unit IV introduces analytical trigonometry from the point of view
of the electricity student and the more analytically inclined mechanics
student.

Unit V is an elementary treatment of numerical trigonometry de-
signed for the beginning student. This unit may be assigned on the
opening day of school if desired.

Unit VI continues the study of numerical trigonometry and empha-
sizes the oblique triangle and trigonometric applications. The section
of Chapter 14 on the use of logarithms in computation may be assigned
in preparation for Unit VI without the earlier part of Unit V.

Unit VII is intended for electricity students, but Chapter 21 would
apply as well for mechanics and building construction students.

Unit VIII is an introduction to the techniques of elementary calcu-
lus. The intention of the authors is here to introduce those techniques
of calculus which will be yseful to the engineering student in the pur-
suit of his major subjects. It is written for the student engineer and the
student engineering technician. It definitely is not written for the
physics major.
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The Appendixes are used at appropriate times throughout the
entire mathematics course.

The authors, in their courses, devote about a year and a half to the
material in this book; but in courses that give a greater proportion of
time to shopwork, the material may occupy a full two years.

The authors have been assisted in the preparation of the manuscript
for this book by many persons.

C. W. Tudbury, now retired, was in charge of the mathematics
department at Wentworth Institute when the manuscript was started.
His successor, Clarence Paddock, maintained an equal interest until
his retirement.-Our present colleagues, J. A. Macdonald, A. M.
Huyck, and R. C. Wheeler, have been particularly helpful. The fol-
lowing men have reviewed the entire manuscript except that portion
on calculus and offered extremely valuable suggestions: Gordon
Duvall of Ohio Mechanics Institute; D. H. Craighead of Ryerson
Institute of Technology; Chauncey R. Kay of The Wyomissing
Polytechnic Institute; LeRoy N. Young of Long Island Agricultural
and Technical Institute; Professor T. J. Higgins of the University of
Wisconsin. .

To R. C. Pickett, president of Pickett and Eckel, Inc., the authors
owe permission to photograph one of that company’s slide rules.
Lastly the authors wish to acknowledge the fine work of Janet Fiske,
Mildred Meyer, George Morton, and James Nasson, who typed the
manuscript.

HAROLD S. RICE
RAYMOND M. KNIGHT
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UNIT SLIDE RULE AND REVIEW OF
ONE ARITHMETIC AND GEOMETRY

Efficient computing methods applied to arithmetic, mensuration,
and geometry—how to use the slide rule

Chapter 1 TREATMENT OF MEASURED
DATA

In the first few chapters of this book we shall review some of the
methods whereby much of the drudgery of computation may be
eliminated and the effectiveness of the work increased. We shall dis-
cuss the efficient use of the slide rule, of tables, and (in the Appendix)
of short cuts, approximations, formulas, and graph paper.

11 Measured Data. Many of the data with which the average
technical man works are obtained experimentally. There is a defi-
nite limit to their reliability. The reliability of a number may be ex-
pressed in terms of either precision or accuracy. Precision is gauged
by the position of the last reliable digit relative to the decimal point,
. whereas accuracy is measured by the number of significant figures.
Significant figures are those known to be reliable and include any . zeros -
not merely used to locate the decimal point. : :

For instance, if the diameters of several wires had been measured
with a micrometer and found to be 0.118, 0.056, 0.008, and 0.207 in.,
one might say that these diameters had been measured to a precjsion
of 0.001 in., and to an accuracy of three, two, one, and three figures,
respectively. _

Should the definition of significant figures seem somewhat arbi-
trary, let us consider the computation of the volume of a rectangular
sheet of metal. Suppose that the measured length, width, and thickness
are 165.2, 5.07, and 0.0021 in.; respectively, and that these measure-
ments are correct to the last digit given. Let us now compare the
effect on the volume of changing the last digit of each measurement
by one. It will be seen that such a change introduces respective errors
of about one-sixteenth of 1 per cent, one-fifth of 1 per cent, and 5 per
cent. The length, then, is the most accurate and the thickness the
least accurate.

12 Rounding Off Numbers. Frequently a result will be
rounded off because the last several digits either are in doubt or are

(1]



2 Slide Rule and Review of Arithmetic and Geometry

not required in that particular computation. The operation of round-
ing off is governed by the following rule:

If the figures to be rejected represent less than half a unit in the last place to
be retained, they are dropped. If they represent more than half a unit in the
last place to be retained, the last retained digit is increased by one. If the
rejected part represents just half a unit in the last place to be retained, the
last retained significant digit is left even or raised to the nearest even number.

EXAMPLE 1

Rounded off to
Number | Four figures  Three figures  Two figures
3.1416 3.142 3.14 3.1
14.815 14.82 14.8 15.
321.35 321.4 ¢ 321 320
6,274.5 6,274 6,270 6,300

In addition and subtraction the precision of the answer corresponds
to the least precise of the quantities involved. Perform the addition or
subtraction, and round off by eliminating any digits resulting from operations
on broken columns on the right.

EXAMPLE 2. Add:

175.6
2.126
13.04
0.0028

190.7688 (Round off to 190.8.)

In multiplication and division the accuracy of the answer corre-
sponds to the least accurate of the quantities involved. Perform the mul-
tiplication or division and round off the answer to a number of significant
figures equal to that in the least accurate quantity in the computation.

EXAMPLE 3. Multiply:
3.14159 X 47.82 = 150.2308338

Although the multiplicand has six significant figures, the multiplier has only

four; therefore, we round off the product to four significant figures and get
150.2. '

1:3 Scientific Notation. In scientific work very large or very
small numbers are expressed as a number between 1 and 10 times an
integral power of 10. Thus 2,580,000 would be written 2.58 X 106,
and 0.0000258 would be written 2.58 X 1075 The magnitude of the
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number is revealed by a glance at the exponent (see Table 14-4,
page 271).

Several other advantages in this notation will become apparent.
Space is saved, a particularly important point in tabulating data.
The labor of counting figures to the right or left of the decimal point
—a labor attended by risk of error—is eliminated. The accuracy with
which a quantity is known is indicated by the number of figures to
the right of the decimal point. For example, when we consider the
number 72,000, we cannot tell whether there are two, three, four, or
five significant figures. No uncertainty exists when we write 7.2 X 104,
7.20 X 104, 7.200 X 10% or 7.2000 X 104

The ease of dealing with large and small quantities in this manner
is illustrated by the following problem.

Simplify the expression

400,000 X 8,000,000 X 0.0045 _. 4 X 10° X 8 X 10* X 4.5 X 102
~ 60,000 X 0.025 X 100 T 6 X 108X 2.5 X 102 X 102

= “—?;‘Z—?—Sﬁ X 106+-9-~24D — 9.6 X 104 = 96,000

There are two instances in which we depart from the rule of
expressing a quantity as a number between 1 and 10 times a suitable
power of 10. If we were to extract the square root of 2.5 X 1077,
we should write this as 25 X 1072 in order to make the exponent of
10 divisible by the index of the root. The square root is readily seen
to be 5 X 107* Also, when quantities are to be added and subtracted,
they must have the same exponents. Thus 4 X 1077 + 7 X 1075 =
4 X 1077+ 700 X 1077 = 704 X 1077 = 7.04 X 1075,

EXERCISE

1. Translate into ordmary notation: 5 18 X 108 3.76 X 1074; 7.5 X
1078, 4.375 X 102
2. Translate into scientific notation:

1 year = 31,500,000 sec (approx)
1 light-second = 186,000 miles
Wavelength of blue light = 0.000047 cm :

3 5 X107 X9 X 10° X 400 _ |
) 4.8 X 104 o

4 6X10’><15X10‘X4X10“=?
) 8 X 10% X 25 X 108 )
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280,000 X 16,000 X 0.009 R
" 2,100 X 2,400,000 X 0.04
6. 9:12 X 5,000 X 33,000
" 550 X 18 X 0.0002
1.2 X 10° X 9 X 10~ 7 X10°
16 X 10X 1.5 x 10— 20000 + 72— <




