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Preface

This reprint selection presents some of the recent developments in the study
of the chaotic behavior of deterministic systems. The problem, posed in its
most general form, is old and appears under many guises: Why are clouds the
way they are? Is the solar system stable? What determines the structure of
turbulence in liquids, the noise in electronic circuits, the stability of plasma in
a tokomak? The subject, defined so broadly, could not possibly be covered in a
single reprint selection. This selection concentrates on the universal aspects
of chaotic motions: those qualitative and quantitative predictions which
apply to large classes of (often very different) physical systems. The selection
can be divided into roughly four parts. The first part offers a general
introduction to deterministic chaos and universality. The second part
presents some of the experimental evidence for universality in transitions to
turbulence. The third part concentrates on the theoretical investigations of
the universality ideas, and the last part gives a glimpse of the further
developments stimulated by the success of the one-dimensional universality
theory.

This selection originates from a NORDITA reprint selection prepared
together with Mogens Hogh Jensen in the fall of 1981. I am grateful to Mogens
and to the NORDITA staff, in particular Nils Robert Nilsson, for their help
with this project. I thank Harry L Swinney, ] Doyne Farmer, David Ruelle,
Albert Libchaber, Yves Pomeau, Robert H G Helleman, David Rand, Robert
MacKay and Stellan Ostlund for their suggestions and criticisms. And last,
but not least, I thank Mitchell ] Feigenbaum for teaching me almost all that I
know about universality in chaos, and all that I know about Schubert.

P. Cvitanovic
NORDITA
August 1983

Note: The reference list for articles referred to in the introduction and the comments to reprint
selections is placed at the end of this volume.
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Universality in Chaos

Predrag Cvitanovicé|[1]
Nordita, Blegdamsvej 17,
DK-2100 Copenhagen O

The often repeated statement, that given the initial conditions we know
what a deterministic system will do far into the future, is false.
Poincaré (1892) knew it was false, and we know it is false, in the
following sense: given infinitesimally different starting points, we
often end up with wildly different outcomes. Even with the simplest
conceivable equations of motion, almost any non-linear system will
exhibit chaotic behaviour. A familiar example is turbulence.

Turbulence is the wunsolved problem of classical physics.
However, recent developments have greatly increased our understanding
of turbulence, and given us new concepts and modes of thought that we
hope will have far reaching repercussions in many different fields
(solid state physics, hydrodynamics, plasma physics, chemistry, quantum
optics, biology, meteorology, acoustics, mechanical engineering,
elementary particle physics, mathematics, fishery[2], astrophysics,
cosmology, electrical engineering and so on).

The developments that we shall describe here are one of those
rare demonstrations of the unity of physics. The key discovery was
made by a physicist not trained to work on problems of turbulence. In
the fall of 1975 Mitchell Feigenbaum, an elementary particle theorist,
discovered a universality in one-dimensional iterations. At the time
the physical implications of the discovery were rather unclear. During
the next few vyears, however, numerical and theoretical studies
established this wuniversality in a number of models in various
dimensions. Finally, in 1980, the universality theory passed its first
test in an actual turbulence experiment.

The discovery was that large classes of non-linear systems
exhibit transitions to chaos which are universal and quantitatively
measurable. This advance can be compared to past advances in the
theory of solid state phase transitions; for the first time we can
predict and measure ‘"critical exponents" for turbulence. But the
breakthrough consists not so much in discovering a new set of scaling
numbers, as in developing a new way to do physics. Traditionally we
use reqgular motions (harmonic oscillators, plane waves, free particles,
etc.) as zeroth-order approximations to physical systems, and account
for weak non-linearities perturbatively. We think of a dynamical
system as a smooth system whose evolution we can follow by integrating

1. Lectures given at the XXII-nd Cracow School of Theoretical Physics,
Zakopane, June 1982. Sections 1 to 4 were written in collaboration with
Mogens Hegh Jensen (Cvitanovi¢ and Hegh Jensen 1982). Published in Acta
Physica Polonica, vol A65 (April 1984),

2. Of special interest to our Icelandic colleagues.



4 Introduction

a set of differential equations. The universality theory seems to tell
us that the zeroth-order approximations to strongly non-linear systems
should be quite different. They show an amazingly rich structure which
is not at all apparent in their formulation in terms of differential
equations. However, these systems do show self-similar structures
which can be encoded by universality equations of a type which we will
describe here. To put it more succinctly, junk your old equations and
look for guidance in clouds’ repeating patterns.

In these lectures we shall reverse the chronology, describing
first an actual turbulence experiment, then a numerical experiment, and
finally explain the observations using the universality theory. We
will try to be intuitive and concentrate on a few key ideas, referring
you to the literature for more detailed expositions[3]. Even though we
illustrate it by turbulence, the universality theory is by no means
restricted to the problems of fluid dynamics. The key concepts of
phase-space trajectories, Poincaré maps, bifurcations, and local
universality are common to all non-linear dynamical systems. The
essence of this subject is incommunicable in print; intuition is
developed by computing. We urge the reader to carry through a few
simple numerical experiments on a desktop computer, because that is
probably the only way to start perceiving order in chaos.

1. Onset of turbulence

We start by describing schematically the experiment of Libchaber and
Maurer (1980) (a nice description has been given by Libchaber and
Maurer(1981)[4]). In this type of experiment a liquid contained in a
small box is heated from the bottom. The siiignt points are:

1. There is a controllable parameter, the Rayleigh number, which is
proportional to the temperature difference between the bottom and
the top of the cell. (Rayleigh number describes the stability of
a convective flow (see Velarde and Normand 1980).)

2. The system is dissipative. Whenever the Rayleigh number is
increased, one waits for the transients to die out.

For small temperature gradients there is a heat flow across the
cell, but the liquid is static. At a critical temperature a convective
flow sets in. The hot 1liquid rises in the middle, the cool liquid
flows down at the sides, and two convective rolls appear:

>
JO

3. The most thorough exposition available is the Collet and Eckmann
(1980a) monograph. We also recommend Hu (1982), Crutchfield, Farmer
and Huberman (1982), Eckmann (1981) and Ott (1981).

Fig.1.1

4. See p.109 this selection.
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As the temperature difference is increased further, the rolls become
unstable in a very specific way - a wave starts running along the roll:

‘\. Flg.1.2

As the warm liquid is rising on one side of the roll, while cool liquid
is descending down the other side, the position and the sideways
velocity of the ridge can be measured with a thermometer:

thermometer ﬁ

Fig.1.3

One observes a sinusoid:

temperature

ﬁ’ time

The periodicity of this instability suggests two other ways of
displaying the measurement:

phase space frequency spectrum

sideways
speed of
the ridge

amplitude

Fig.1.5
position of frequency
—% the ridge >
a2 f
1 (e}

Now the temperature difference 1is increased further. After the
stabilisation of the phase-space trajectory, a new wave 1is observed
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superimposed on the original sinusoidal instability. The three ways of
looking at it (real time, phase space, frequency spectrum) are:

hatched arca is the diffecrcence between
the original sinusoid and the new in-

tempe;\ature / stability

—p time

f ? 3 Fig.1.6

v
gN
v&”{pﬁﬂ"

s
|

2

—> <4

-

A coarse measurement would make us believe that T, is the periodicity;
however, a closer look reveals that the phase-space trajectory misses
the starting point at T,, and closes on itself only after 2To. If we
look at the frequency spectrum, a new wave band has appeared at half

the original frequency. Its amplitude is small, because the
phase-space trajectory is still approximately a circle with periodicity
’I‘O.

Now, as one increases the temperature very slightly, a

fascinating thing happens - the phase-space trajectory undergoes a very
fine splitting:

4

Fig.1.7
£, fo 3fo fo
a2 Ta
We see that there are three scales involved here. Looking casually, we
see a circle with period T,; looking a little closer, we see a pretzel

@ with period 2T4; and looking very closely, we see that the
trajectory closes on itself only after 4T_. The same information can be

read off the frequency spectrum; the dominant frequency is fo (the
circle), then fo/2 (the pretzel), and finally, much weaker fo/4 and
3f,/4.

The experiment now becomes very difficult. A minute increase in

the temperature gradient causes the phase—s%ace trajectory to split on
an even finer scale, with the periodicity 2°To. If the noise were not
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killing us, we would expect these splittings to continue, yielding a
trajectory with finer and finer detail, and a frequency spectrum

log amplitude

fo

iy

Lo
Fig.1.8

il A

with families of ever weaker frequency components. For a critical
value of the Rayleigh number, the periodicity of the system is 2%Tq,
and the convective rolls have become turbulent (this is weak turbulence
- the rolls persist, wiggling irregularly). The ripples which are
running along them show no periodicity, and the spectrum of idealized,
noise-free experiment contains infinitely many subharmonics:

5

‘(’ /+ /‘0/9_

kg Fig.1.9

If one increases the temperature gradient beyond this critical value,
there are further surprises: we refer you to Libchaber and Maurer
(1981). We now turn to a numerical simulation of a simple non-linear
oscillator 1in order to start understanding why the phase-space
trajectory splits in this peculiar fashion.

2. Onset of chaos in a numerical experiment

In the experiment that we have Jjust described, limited experimental
resolution makes it impossible to observe more than a few
bifurcations. Much 1longer sequences can be measured in numerical
experiments; the non-linear oscillator studied by Arecchi and Lisi
(1982) is a typical example:
)

X + kx - x + 4x3 = Acos(wt) (2.1)
The oscillator is driven by an external force of frequency w, with
amplitude A and the natural time wunit Ty = 27/w. The dissipation is

controlled by the friction coefficient ks Given the 1initial



8 Introduction

displacement and velocity one can easily follow numerically (by the
Runge-Kutta method, for example) the phase-space trajectory of the
system. Due to the dissipation it does not matter where one starts in
the phase space; for a wide range of initial points the phase-space
trajectory converges to a limit cycle (trajectory loops onto itself)
which Eog some k = ko looks something like this (fig. 12a in Feigenbaum
1980a) l51):

Fig.2.1

arbitrary start

—3 X

If it were not for the external driving force, the oscillator would
have simply come to a stop; as it 1is, it is executing a motion forced
on it externally, independent of the 1initial displacement and
velocity. You can easily visualise this non-linear pendulum executing
little backward jerks as it swings back and forth. Starting at the
point marked 1, the pendulum returns to it after the wunit period
To'

However, as one decreases the friction, the same phenomenon is
observed[6] as in the turbulence experiment; the limit cycle undergoes
a series of period-doublings

% two-cycle + four-cycle
2
Fig.2.2
—»> ——

The trajectory keeps on nearly missing the starting point, until it
hits it after exactly 2BT,. The phase-space trajectory 1is getting
increasingly hard to draw; however, the sequence of points 1, 2, ...,
2D, which corresponds to the state of the oscillator at times Tqr ZTQ,

a i 2“TO, sits in a small region of the phase space, so we enlarge it
for a closer look:

5. See p. 49 this selection.

6. If you have a desktop computer with graphics, you can easily do this
experiment yourself. For example, if you take k = 0.154, W = 1.2199778
and A = 0.1, 0.11, 0.114, 0.11437, ..., you will observe bifurcations.
There 1is nothing special about these parameter values; we give them
just to help you with finding your first bifurcation sequence.
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1[ non-linear oscillator turbylence ‘-(‘.Jc\e

8-cycle

Fig.2.3

Globally the phase-space trajectories of the turbulence experiment and
of the non-linear oscillator numerical experiment look very different.
However, the above sequence of near misses 1is local, and looks roughly
the same for both systems. Furthermore, this sequence of points lies
approximately on a straight line

Fig.2.4

-

Let us concentrate on this 1line: this way of reducing the
dimensionality of the phase space is often called a Poincaré map.
Instead of staring at the entire phase-space trajectory, one looks at
its points of intersection with a given surface. The Poincaré map
contains all the information we need; from it we can read off when an
instability occurs, and how large it 1is. One varies continuously the
non-linearity parameter (friction, Rayleigh number, etc.) and plots
the location of the intersection points; 1in the present case, the
Poincaré surface is a line, and the result is a bifurcation tree:

limit cycle intersection
points

1#

r.- chaos starts at ZQTO

a forest of
felled :-- trees i
(see May 1976) Fig.2.5

— non-linearity
parameter



