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PREFACE

Computational methods of solving extremal problems developed
very intensively in recent years.

The lists of the literature on these subjects contain at present
hundreds of items. This interest in the development of computational
methods is not casual. It reflects the important role played by the
finding of extrema in diverse applied problems. The problem of an
effective minimization of a function with different constraints on
the variables is the subject matter of this book.

It should be stressed from the very beginning that recent years
have brought changes in the requirements to¢ be met by new com-
putational algorithms. Some ten or fifteen years ago any new algo-
rithm for solving a minimization problem was noticed with interest,
but now only the construction ¥ a new algonthm is msufﬁcwnt.
It is now necessary to showin what respect'it is better than the exist-
ing ones. Thus there arises the problem of comparing the effective~
ness of different algorithms. Unfortunately this problem has no simple
solution. This is due to the necessity of choosing a criterion of effec-
tiveness and the criteria may be diverse. For instance, we can take
as a criterion of effectiveness the accuracy of the result obtained,
the time required for computing, the necessary storing capacity of
the computer, ete. Also it is often necessary to use rather contra-
dictory eriteria in estimating an algorithm.

In selecting algorithms to be included in this book, the authors
based their choice on the criterion of aceuracy of the result and the
rate of convergence of the iterative process. However, even with this
limiting condition it is not possible to order all the algorithms in
one and only one way and tell which of them is better or worse than
another, The reason is that the estimate of the rate of convergence is
not made for a particular problem, rather it is applied to a class of
problems. Therefore an algorithm which is poor as applied to a broad
class of problems can prove efféctive on a narrower one. This makes
it necessary for the calculator to keep a large reserve of algorithms
and to apply them depending on the problem to be solved.

It is important to know what ensures a fast rate of convergence of
the algorithm. In practice, even the calculating of the first derivative
of a function quite often involves certain difficulties; these become
insurmountable when trying to calculate the second derivative.




PREFACE

Therefore special stress is laid on the description of the algorithms
that require the finding only of the first derivative or only of the
value of the function.

In describing the computational methods we consider only the
finite dimensional case. This is due to two reasons. First, in using
a computer for calculations, the problem is to be approximated any-
way by a finite dimensional one. Secondly, most of the known algo-
rithms are comparatively simply generalized for the minimization
of functionals without essential changes. This approach made it
possible to make the book easily understood by a broad circle of
readers, since in order Lo grasp most of the results described only a
knowledge of the principles of mathematical analysis and linear
algebra is required.

To avoid the necessity of frequent cross-referencing, not many refe-
rences are given in the text. Short bibliographic notes follow some
of the chapters. The authors did not attempt to comprise all the
literature on the questions treated, this being simply impossible
because of its vastness. This is why the list of literature given at
the end of the book includes only papers and monographs directly
used in writing this book.

It should be noted that the authors have not discussed the methods
of solving a broad and important class of noncorrect extremal prob-
lems, which are treated in the works of A. N. Tikhonov and his
followers. The authors have but slightly touched the solving of
optimal control problems. These problems have been studied from
various points of view and the methods for their solution are given
in N. N. Moiseev’s monograph Numerical Methods in the Theory of
Optimal Systems.

The algorithms set forth below are iterative in character. This
means that we can construct a finite or infinite sequence of points
xy, &k — 0, 1 ... which is said to converge to the solving of a mi-
nimization problem.

The points of the sequence are related by the equation

Tpty == Tp + APy

where p;, is the vector of shift from point z; and @, is a step along
the direction of pj. Therefore the description of any of the algo-
rithms given below consists in establishing the method of choosing
the vector p, and the length of the step ay. It should be noted that
the miethod of choosing the vector p, determines the general rate of
convergence of the process and the method of choosing a;, has an im-
portant inflnence on the amount of calculations at each iteration.
Therefore the authors’ aim was to give in all cases of choosing «,
a method, such that the required value of oy could be found after
a finite number of iterations without affecting the general rate of
convergence.
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PREFACE

Let us briefly review the estimates of the rate of convergence,
which are in most cases used in this book.

We say that a sequence {23} converges Lo point x, at a linear rate
or at the rate of geometrical progression (with the ratio ¢) if from a
certain % the inequality || xp4; — @y || < q || 2 — 24 || Where 0 <<
< q < 1, is satisfied. If the inequality || 41 — Ty || << qr || 2 — 24|
is satisfied. where ¢, — 0 with & — oo, we say that the rate of conver-
gence of lhe sequence {xy} is superlinear, or faster than the rate of con-
vergence of any geometric progression. If q, < C || 2, — z4 || -0,
then || rppy —az, || << C || 2, — x4 |- This estimate is a character-
istic of the quadratic rate of convergence.

The above estimates will occur in this book also in several other
equivalent forms.

Some remarks on the notations used.

As mentioned before, the subject is treated for the case of an n-
dimengional vector space which will be denoted by E". The vectors
will be denoted by lower-case letters z, y, z, etc. and their components
by using superscripts so that z' is the i-th component of vector z.
The subscripts denote the elements of a sequence. Malrices are deno-
ted by capital letters A, B, C etc. An asterisk as upper index denotes
transposilion, i.e. A* is the transposed matrix A. As a rule vector z
means a column-vector so that z* denotes a row-vector. The scalar
product of two vectors is denoted by (z, y), i.e.

n
(z, y)= X ='y'.
i=1
The norm of the vector is understood to be its Euclidean norm,
unless otherwise specified:

Nz|l=V (z, 2).

In conclusion, the authors express their sincere gratitude
to G. E. Lybarskaya, L. A. Sobolenko, E. I. Boguslavskaya and
V. M. Panin for the invaluable assistance in preparing this book.

Chapter I (except Sec. 5 and partly Sec. 2) and Chap. 1II (except
Sec. 9 and partly Sec. 3) have been written by B. N. Pshenichny.

Chapter II, the third and the fourth subsections of Sec. 2 and
the fifth and sixth subsections of Sec. 3, and Sec. 9 of Chap. III
have been written by Yu. M. Danilin.
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CHAPTER 1

INTRODUCTION TO THE THEORY
OF MATHEMATICAL PROGRAMMING

This chapter describes some facts from the theory of convex sets
and the necessary conditions of the extrema; these facts are neces-
sary for understanding the matter set forth in subsequent chapters.

1. CONVEX SETS

In this section we consider the basic properties of convex sets in
an n-dimensional Euclidean space.

Definition. Separation Theorem

Definition 1.1. A set of points X in E™ is called convex if together
with any x,, z, € X it contains also all points of the form:
z=Ar; + (1 —2Nzx, 0<ALL1L
In geometrical terms this means that if the end points of a seg-
ment belong to a convex set X then the whole segment belongs to the
set too.
Lemma 1.1. The following statements hold:

(1) The intersection of any number of convex sets is convex.'
2) If :r,~ €X, i=1, ..., m, then with any A;, i =1,..., m

m
such that 2,7» =1, A =0, a point z = 2 Ax; belongs to X.

=1
The followmg theorem and its corollarles are the basic tools using
which it is possible to obtain results characterising various pro-
perties of convex sets.
Theorem 1.1. Let X be a convex set, and X its closure. If point x,
does not belong to X, then there exist a vector a € E™, a % 0, and a num-
ber € > 0 such that for all x € X

(av 1‘) < (a’ xo) — &.

12



CONVEX SETS

Proof. X is aclosed set, by definition. Let us show that it is convex.
Indeed, if z € X, then there is a sequence {z}, k=1, ..., such
that zy € X, z; — 2. Now let z, y € X, 0 << A < 1. Let us prove
that Az 4+ (1 — M)y € X. Since X is a convex set, it follows from

Tn, Yu € X, xp >, yp —y that
Az + (1 —A) yn € X,
Ap + (1 — Ay >Az+ (1 —2A)y.
This means that Az + (1 — Q) y € X, i.e. X is convex.
Let us take a point y € X whose distance from z, is the least, i.e.
lz—z =1y —all, z€X.
Since X is convex for all z € X and 0 <A < 1, we have
M+ (1—NMNy=y+Ari(z—y eX.
Therefore
Az + (1 =My —az IP=1lly —ao +A(@—yp) P
=y —xt+r@—y),y—2Fr(z—y)
=y —20 y—x) +2A(y —20, 22—y + A (@2 —y, z — )
=lly—2 IP+2A @y —20, 2 —y+A 2=y P>y —2lP
The last inequality holds for any A, varying between zero and
unity. Simplifying it we obtain
20—z z—y) tAllz—yIP =05
hence with A =0
Yy —apyz—1y)=0.

Let a = 2, — y. The last inequality can then be written in the
form (a, z) < (a, y). But

(a, y) = (d, xo) = ((l, Ty — y) = (av ‘ZO) — ” a ”2-
Setting € = || a ||?, we finally obtain
(a’ $) < (tl, xo) — &.

This inequality holds for any z € X. Besides € > 0 as z, € X and
consequently y 5= z,. Therefore

e=|la|lP= 1z —yIP>0.
Q.E.D.

13



MATHEMATICAL PROGRAMMING

Remark. In proving theorem 1.1. we have proved at the same
time that the closure of a convex set is convex too. As a simple
exercise the reader can prove that the set of interior points of a con-
vex set is convex too.

Corollary 1.1. Let X be a convex set and z, the frontier point of X.
Then there is a vector a %= 0 such that

(2, ) < (a z), z€X.

Corollary 1.2. If X and Y are convex sets that do not intersect, then
there is a vector a = 0 such that

(@, 2) < (a, y), z€X,y€Y.

Corollary 1.3. If X and Y are closed convex sets which do not intersect
and one of them is bounded, then there exist a vector a = 0 and a
number ¢ > 0 such that

(@, 2) <(a, y) —e, z€EX, y€v.

Convex Cones

Definition 1.2. A set K is called a convex cone if the set is convex
and together with every point x € K it contains all points Ax with L > 0.
It is clear that if x, y € K then z + y € K. In fact, since K is a

convex set, point %:c + —%y belongs to K. But
1 1
z4y=2 (7x+5y) :

whence 2z + y € K by the definition of a cone. The most important
properties of cones are formulated in terms which establish the rela-
tion between the original cone and the cone that is its conjugate or
dual.

Definition 1.3. Let K be a convex cone. The set of all vectors y € E"
satisfying for any x € K the inequality (z, y) =0 is called a conjugate
cone and denoted by K*.

An elementary check shows that K* is also a convex cone.

Lemma 1.2. K* is a closed convex cone.

Lemma 1.3. Let K be a convez cone. Then z, € K if and only if
(g, y) =0 for all y € K*. If K is closed, then

(K*)* = K.

Proof. It is evident that if z, € K, then (z,, y) = 0 for all y € K*.
Suppose it is false. Let (zy, y) = 0 for any y € K*, but z, € K.

14



CONVEX SETS

Since K is a closed convex set and using theorem 1.1, we can assert
that there is a vector a such that

(ay z,) < (a, z) — &, z € K.
Now a closed cone K always contains point 0. Therefore in particular

(a, ) < —e. (1.1)
On the other hand

(a, ) =0, z € K. (1.2)

Indeed, if for a certain z; € K (e, z;) << 0, then since Az; € K with
A>0

(@, xo) < A(a, 7) — ¢

and the last inequality must be valid for any A; this is impossible
if (a, ;) << 0. Thus (1.2) is valid and consequently a € K*. Then
(a, zo) = 0 and this contradicts (1.1). This proves the first part of
the lemma.

Let us now prove its second part. If 2 € K, then (z, y) = 0 for
all y € K*, by definition, and therefore z € (K*)*, K < (K*)*.
Conversely, by definition, z € (K*)* if and only if (2, y) = 0 with
any y € K*. However, it was proved above that in this case z € K,
ie. (K*¥)* K. Thus (K*)* = K. Q.E.D.

Polyhedral cones are an important class of cones encountered
in the theory of linear programming.

Definition 1.4. A cone K is called polyhedral if there exists a finite
set of n-dimensional vectors a;, i = 1, ..., m such that with 2 € K
the expansion

m
x=’21?wa;, Ai =0, i=—1, ..., m (1.3)
is valid and conversely (1.3) lmplzes that x € K.

Thus a polyhedral cone K is a set of points which can be repre-
sented in the form (1 3). A given point z € K in the form (1.3),
speaking generally, is represented not uniquely.

Lemma 1.4. Let 2 € K, K being a polyhedral cone. Then there is such
an expansion of x in vectors a; with nonnegative coefficients h;, that
the number of indices i for which &; > O does not exceed n, the number
of dimensions of the space; the vectors a; corresponding to nonzero A;
are linearly independent.

Proof. Letx €K, i.e. z = 2 Aia;, and .J be the set of those indices i

such that A; > 0. Suppose that the number of elements in .J is
greater than n, or does not exceed n, but the vectors a;, i € J, are

15



MATHEMATICAL PROGRAMMING

linearly dependent. Since more than » linearly independent vectors
cannot exist in an n-dimensional space, there are coefficients o;,

not all zero, such that D] a;a; = 0. Besides, by definition of J,
i€y
Ay =0 if i¢J and so

r= D Ma;, A>0, icJ.
i€y

Subtracting from this relation the preceding one multiplied by e,
we obtain

r= D) (h—e;)a;.

ey
Without loss of generality we can take that a; >0, for some i€ J.
Setting ;= min =L and hi =M —e,0;, we have
ey, o;>0 %i
X = Z Riai
’iE!,y

where A; =0 and for one i at least A; = O.

Thus we have obtained an expansion of z in vectors «¢; with non-
negative coefficients; however the number of strictly positive coef-
ficients has been diminished.

This process can now be applied further until the number of non-
zero coefficients becomes less than n or equal to n and vectors a;
for which A; > 0 become linearly independent. Since we have a pro-
cess of diminishing a whole number, this process obviously cannot
be continued infinitely and after a certain number of steps we shall
get an expansion which satisfies the conditions of our lemma.

Lemma 1.5. A polyhedral cone is closed.

Lemma 1.6. Let the cone K be defined by a system of linear inequalities

(a;, ©) =0, i=1,...,m

where a; € E™. Then the conjugate cone K* is a polyhedral cone and
consists of points y, which can be presented in the form

m
y= Dl Ma;, A=0, i=1, ..., m.
i=1
Proof. Let us consider the cone

K=ly:y=D Ma;, =0, i=1,...,m.

i=1
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