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PREFACE

A large amount of work has been done on ordinary differ-
ential equations with small parameters multiplying deriv-
atives. This book investigates questions related to the
asymptotic calculation of relaxation oscillations, which
are periodic solutions formed of sections of both slow-

and fast-motion parts of phase trajectories. A detailed
discussion of solutions of differential equations involving
small parameters is given for regions near singular points.

The main results examined were obtained by L. S.
Pontryagin and the authors. Other workshave alsobeen taken
into account: A. A. Dorodnitsyn's investigations of Van
der Pol's equation, results obtained by N. A. Zheleztsov
and L. V. Rodygin concerning relaxation oscillations in
electronic devices, and results due to A. N. Tikhonov and
A. B. Vasil'eva concerning differential equations with small
parameters multiplying certain derivatives.

E. F. Mishchenko
N. Kh. Rozov
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CHAPTER |

DEPENDENCE OF SOLUTIONS ON
SMALL PARAMETERS. APPLICATIONS OF
RELAXATION OSCILLATIONS

When the operation of a device or the course of a process is
described by differential equations, we are passing from an
actual object (process) to an idealized model. Every math-
ematical idealization involves, to a certain extent, the
neglect of small quantities. Hence the question of how
much distortion of the original phenomenon is introduced
becomes important. We thus arrive at the mathematical
problem of the dependence of solutions of differential equa-
tions on small parameters.

In this chapter we consider general characteristics of
various types of dependence in the case of a normal auton-
omous system of ordinary differential equations. To sim-
plify the exposition we consider problems involving only one
parameter.

1. Smooth Dependence. Poincarée's Theorem

We consider the autonomous differential equation system
xi=Fi(x1, ..., x", &), i=1,...,n, (1.1)
or, in vector form, the equation
x=F(x, ¢), (1.2)
where x =(x',...,2") is an n-vector of euclidean vector space
R, F(x,e) = (F*(x,e),...,F"(x,e)) is an mn-dimensional vector-
valued function of x and e, and £ is a numerical parameter.
We first assume that e is small,
0<le<e,, (1.3)
where €0, is a small number.
Let the functions F¥(x',...,x"), © = 1,...,n be defined

and continuous in some domain G of the variables x*,...,x",
where e satisfies (1.3). We write

x=q(t, €) (1.4)

1
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for the solution of (1.2) satisfying the initial condition
Lo = 9(to, €), (xo, €) €EG. Together with (1.2) we consider
the system

x=F{(x, 0), (1.5)
obtained from (1.2) by putting € = 0. Let
=yt (1.6)

be the solution of (1.5) with the same initial condition
Lo = @y (to), defined on some finite time interval

Lo<<t<T. (1.7)

If ¢ is small, the right sides in (1.2) and (l1.5) differ
by only a small quantity. It is natural to ask how the
solutions (1.4) and (1.6) differ. In many cases important
in practice, this question is answered by the following
well-known theorems [45, 30, 23, 3].

Theorem 1 (concerning the continuous dependence of solu-
tions on a parameter). If the right sides in (1.2) are con-
tinuously differentiable with respect to x',...,x2"” and con-
tinuous functions of € in a region G,then, for sufficiently
small e, the solution (1.4) is defined on the same interval
(1.7) as the solution (1.6), and

(p(tv s)cho(t)"‘Ro(t» 8), (1-8)

where Ro(t,e) - 0 when € » 0, uniformly with respect to ¢
on the interval (1.7).

Theorem 2 (concerning the differentiability of solu-
tions with respect to a parameter). If the right sides
in (1.2) have, in ¢, continuous partial derivatives up to
order m > 1, inclusive, with respect to the totality of all
arguments, then, if € is small enough, the solution (1.4)
has the representation

(p(t» 8)=(po(t)—]—8(p1(t)+...—f—a”"qu,,,_l(t)-l—R,,,(t, 6), (1°9)
where R _(t,e) - 0, when € - 0 like €”, uniformly with re-
spect to ¢t on the interval (1.7).

Theorem 3 (Poincaré's theorem on the analyticity of
solutions as functions of a parameter). If the right sides
in (1.2) are analytic functions of each of their arguments
in G, then, for sufficiently small e, a solution (l1.4) has
the representation

? (¢ &)=, (t)+m§l e"@n(t) (1.10)

the series converges uniformly on the interval (1.7).
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Theorems 1, 2, and 3 not only confirm that, for small
but finite e, the solution (1.4) differs only slightly from
the solution (1.6), but also indicate a method of finding
this difference with any required degree of accuracy.

2. Dependence of Solutions on a Parameter, on an Infinite

Time Interval

Theorems 1, 2, and 3 give no answer tothe questionof
the deviation of the solution (1.4) from the solution (1.6)
on an infinite time interval. Simple examples show that
this deviation is not always small. Moreover, even if the
solution (1.6) is defined for all ¢ > %o, the solution (1.4)
is not always defined for all ¢ > %o.

Example 1. The scalar equation
i=(x+ o (1)
becomes
i e 8 (2.2)

when € = 0. The solution of (2.2) with zero initial value
for ¢ = 0 is & = @, (¢) = 0, 0 < ¢ < », while the solution of
(2.1) with the same initial wvalues is

X=9(t, &) =1

el &

this solution is defined only for 0 < ¢ < 1/e.

Example 2. Consider an electric circuit, formed of a
condenser with capacitance ( and a coil with inductance L in
series (Fig. 1). 1If we neglect the small resistance of

the circuit, the dependence of the current 7 on the time is
described by the following equation [45]:

a1,
Lo+ i=0. (2.3)
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But is this idealization, with the resistance R neglected,
justified? 1In other words, does the solution of (2.3) differ
only slightly from the solution of the equation

dl
Cr R AL 1=0 (2.4)

when K is small?

If we are interested only in a finite time interval,
solutions of (2.3) and (2.4) with the same initial conditions
differ only by a small quantity. On an infinite time interval,
however, this is not true; in fact 7(#) - 0 when ¢ - =, but
2(t) performs periodic oscillations with constant amplitude.
The phase portraits of Eqs. (2.3) and (2.4) in the (¢, di/dt)
and the (I, dI/dt) plane differ strikingly; the only equi-
librium position for (2.3) is a center, while Eq. (2.4) has
a focus (Fig. 2).

3. Equations with Small Parameters Multiplying Derivatives

Another reason for Theorems 1, 2, and 3 to be in-
applicable for estimating the deviation of the solution (1.4)
from the solution (1.6), even on a finite time interval, is a
discontinuity (or lack of smoothness) in the dependence of
the right sides in (1.1) on €. This occurs in normal sys-—
tems in which a small positive parameter € occurs as a co-
efficient of some derivatives, for example in the system

( akf::rff(x’, o XE Yt o YY), i=1,...,k,
Y=g/ (x, ..., Xk gL L, Y, i=1,...,1, (3.1

a7
at

C
\

T

Fig. 2
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where fi and gj are smooth functions of all their kK + 7 =n
arguments. It is clear that, if (3.1) is written in the
form (1.1), the right sides contain functions (1/e)f?, which
increase without limit when e - O.

We can reduce (3.1) to the form (1.1), so that the right
side is a smooth function of . To this end, we put £ = €6
to obtain

i .
é%%—::f’(xl, o XE g, LYY, i=1,...,k

‘[!/j ! k 1 L H 1 i
Tm~:ag(x, R N /L /L5 IR == IR

(3.2)

Theorems 1, 2, and 3 can be applied to (3.2), but this is not
of great practical interest. We can ensure that solutions of
(3.2) and solutions of the system obtained from it by putting
e = 0 differ by a small amount only on a finite interval of
values of 6, i.e., on a time interval whose length tends to
zero with e.

We next consider two physical situations described by
differential equation systems of the form (3.1). These
examples will also be useful later in the illustration of
certain phenomena.

Example 3 (Van der Pol's equation). Consider a vacuum
tube oscillator consisting of a triode with an oscillating
anode circuit; the circuit diagram is shown in Fig. 3. If T
is the current passing through the resistance ba or, equiv-
alently, through the inductance kb, then I, as a function
of £, is described by the following differential equation

o

x4

Fig. 3
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0 u
Fig. 4
L45, 7, 31:
LR bt (ng); o

here M is a positive constant (the mutual inductance) and
f(u), a characteristic of the vacuum tube, is a smooth mono-
tonically increasing function of u with a graph as shown in
Fig. 4. We can assume that f'(u) has its maximum value for
u =0, i.e., f"”(0) = 0 and f'(0)< O.

It is known [45] that a vacuum tube oscillator gen-
erates undamped periodic oscillations if its parameters
satisfy the condition

R <X f0); (3.4)

in this case, Eq. (3.3) has a single stable limit cycle in
the (I, dI/dt) plane. 1If I(t) is replaced by the unknown

function 2(¢t) = I(t) — f(0), Eq. (3.3) becomes Rayleigh's

equation

LC%+F(%)+1':0. (3.5)

where F(v) = RCv — f(Mv) + F(0).

We now consider the idealized case in which f(u) can (at
least when the absolute value of u is not too large) be re-
placed by a cubic polynomial

F@)=FO)+F O)utg " (0)u's
then

F ()= (RC—F'(0) M) v— [ (0) M7,
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f™mo)M® < 0, RC— f'(0)M <0 by virtue of condition (3.4), and
(3.5) becomes
i rO)yMy—L oy me (LTI o
LC L | (RC—F ) M)—5 I O M (g7 ) | 47 + =0

1
z

If we transform to the new time ¢ = ¢/(LC)° and the new un-

known

RC—f (O) M
< I © Mo

z=oai, where o?— LG,

then we obtain the equation

d?z dz 1 /dz\3
[~ a3 (E)]+e=0.

where A= f—&—M:—E > 0.

V' LC

Finally, differentiating this last equation with respect to
t and putting x = dz/dt, we obtain Van der Pol's equation

[11]
d?x o dx _

Equation (3.6) describes the operation of a vacuum tube
oscillator in our idealization. The parameters of the gen-
erator are characterized by the single parameter A. We have
already noted that, if (3.4) holds, we have self-excited
periodic oscillations (auto-oscillations); mathematically,
this corresponds to the fact that Van der Pol's equation
with any A > 0 has a stable limit cycle in the (x, dx/dt)
plane.

For small A, Eq. (3.6) differs only slightly from the
equation for a linear oscillator, and the auto-oscillations
of the generator are close to simple harmonic oscillations.
As ) increases, the auto-oscillations differ more and more
from harmonic oscillations, and for large A they take the
essentially different form of relaxation oscillations (see
Sec. 4).

For large A > 0, (3.6) can easily be reduced to the
form (3.1). 1In fact, if we put

X
. 1 d t 1
y={@—na+ ., =1, e=3, (3.7
0
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then after the obvious transformations we obtain from (3.6)
a second-order system (in which we write ¢ instead of ¢, for
simplicity)

dx 1,
egr=Yy—g ¥ +%

dy _
dt —

(3.8)

here € > 0 is a small parameter. We shall also refer to (3.8)
as a Van der Pol equation.

Second-order systems of the form (3.1) (i.e., with
k = 17 = 1) arise in the study of many electronic devices
(for example, vacuum tube multivibrators with a single R(C-
component), in the description of the operation of which
small parasitic capacitances play an important role [3], and
in some types of multivibrators using tunnel diodes [54].

Example 4. The operation of several electronic devices
(for example, two-tube Frugauer generators and symmetric multi-
vibrators [3]), when small parasitic capacitances and in-
ductances are taken into account, is described by a fourth-
order differential system of the form

ext=—a (y'—y*) + ¢ (¥)—22,

ex? = (' —y?) + @ (x?) —x1, (3.9)
!'/1=x1,
_l'/’=x3;

here a > 0 is a constant and ¢(u), —1 <u < 1, is a function

of u whose graph is shown in Fig. 5 (which is obtained by a
transformation of a vacuum tube characteristic function; see
Fig. 4). 1If the parasitic parameters are not taken into ac-
count, the operation of these devices is described by the
equations obtained by putting € = 0 in (3.9):

[~ —0) o () —x =0,

1 2 _
i a(y'—y )'i’(P(xz)_{C: = 0; (3.10)
Yy =x,
:l/"’* X2

Radiophysicists have recently discovered that such devices
can generate periodic oscillations of an unusual nature: At
certain times (or for certain current strengths), discontinu-
ous changes can occur between periods of smooth variations.
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Q)

e e T e e i e i e et i i

Fig. 5

Oscillations of this type are called relaxation oscillations.
However all attempts at a theoretical explanation of this
phenomenon by means of the system (3.10) failed. It was
found necessary to introduce supplementary physical hypoth-
eses (the "discontinuity hypothesis'" [27]). The first pure-
ly mathematical explanation of relaxation oscillation in
systems of the form (3.1), without any extra physical hypo-
theses, was given in [20] and developed further in [38]. We
discuss this explanation in Sec. 5, using the systems (3.9)
and (3.10) as examples.

4. Second-Order Systems. Fast and Slow Motion. Relaxation

Oscillations

We now consider the second-order system

[ex=F(x, y), 4.1)
| y=g(x, y),

where x and y are scalar functions of ¢ and € is a small
positive parameter. Let

| 1 9 =0, (4.2)
| y=g(x, v)

be the degenerate system corresponding to (4.1), i.e., the
system obtained from (4.1) by putting € = 0. The system

(4.2) is not a normal differential equation system [the first
of (4.2) is not a differential equation]. Hence it does not
have solutions with arbitrary initial values (xo,Y0). We must
find solutions with initial points on the curve f(x,y) = 0,



