Gavin Bierman
Christoph Koch (Eds.)

Database
Programming
Languages

10th International Symposium, DBPL 2005
Trondheim, Norway, August 2005
Revised Selected Papers

LNCS 3774

@ Springer

Gavin Bierman Christoph Koch (Eds.)

Database
Programming
LLanguages

10th International Symposium, DBPL 2005
Trondheim, Norway, August 28-29, 2005
Revised Selected Papers

@ Springer

Volume Editors

Gavin Bierman

Microsoft Research

JJ Thomson Avenue, Cambridge CB3 OFB, UK
E-mail: gmb@microsoft.com

Christoph Koch

Universitit des Saarlandes

Lehrstuhl fiir Informationssysteme

Postfach 15 11 50, 66041 Saarbriicken, Germany
E-mail: koch@infosys.uni-sb.de

Library of Congress Control Number: 2005937142

CR Subject Classification (1998): H.2, H.3, E.2, D.3.3, H4

ISSN 0302-9743
ISBN-10 3-540-30951-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30951-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved. whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services. Chennat, India
Printed on acid-free paper SPIN: 11601524 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3774

Preface

The 10th International Symposium on Database Programming Languages, DBPL
2005, was held in Trondheim, Norway in August 2005. DBPL 2005 was one of
11 meetings to be co-located with VLDB (the International Conference on Very
Large Data Bases).

DBPL continues to present the very best work at the intersection of database
and programming language research. DBPL 2005 accepted 17 papers out of a to-
tal of 63 submissions; an acceptance rate of 27%. Every submission was reviewed
by at least three members of the program committee. In addition, the program
committee sought the opinions of 51 additional referees, selected because of their
expertise on particular topics. The final selection of papers was made during the
last week of June. All authors of accepted papers submitted corrected versions,
which were collected in an informal proceedings and distributed to the attendees
of DBPL 2005. As is traditional for DBPL, this volume was produced after the
meeting and authors were able to make improvements to their papers following
discussions and feedback at the meeting.

The invited lecture at DBPL 2005 was given by Giuseppe Castagna enti-
tled “Patterns and Types for Querying XML Documents”; an extended version
of the lecture appears in this volume. Given the topic of this invited lecture,
we invited all attendees of the Third International XML Database Symposium
(XSym 2005), also co-located with VLDB, to attend. Continuing this collabo-
ration, we organized with the co-chairs of XSym 2005 a shared panel session
to close both meetings. The invited panel discussed “Whither XML, c. 2005?”
and consisted of experts on various aspects of XML: Gavin Bierman (Microsoft
Research), Peter Buneman (University of Edinburgh), Dana Florescu (Oracle),
H.V. Jagadish (University of Michigan) and Jayavel Shanmugasundaram (Cor-
nell University). We are grateful to the panel and the audience for a stimulating
and good-humored discussion.

We owe thanks to a large number of people for making DBPL 2005 such a
great success. First, we are grateful to the hard work and diligence of the 21
distinguished researchers who served on the program committee. We also thank
Peter Buneman, Georg Lausen and Dan Suciu, who offered us much assistance
and sound counsel. Svein Erik Bratsberg provided flawless local organization.
Chani Johnson gave us much help in mastering the subtleties of the Microsoft
Research Conference Management Tool. It was a great pleasure to organize a
shared panel and invited lecture with Ela Hunt and Zachary Ives; the co-chairs of
XSym 2005. Finally, we acknowledge the generous financial support of Microsoft
Research.

September 2005 Gavin Bierman and Christoph Koch

Program Co-chairs

Gavin Bierman
Christoph Koch

Program Committee

Marcelo Arenas
Omar Benjelloun
Sara Cohen
James Cheney
Alin Deutsch
Alain Frisch
Philippa Gardner
Giorgio Ghelli
Torsten Grust
Jan Hidders
Haruo Hosoya
Sergey Melnik
Tova Milo
Gerome Miklau
Frank Neven

Organization

Microsoft Research Cambridge, UK
University of Saarland, Germany

University of Toronto, Canada
Stanford University, USA
Technion, Israel

University of Edinburgh, UK
University of California, San Diego, USA
INRIA Rocquencourt, France
Imperial College, London, UK
University of Pisa, Italy
University of Konstanz, Germany
University of Antwerp, Belgium
Tokyo University, Japan
Microsoft Research, USA

Tel Aviv University, Israel
University of Washington, USA
University of Limburg, Belgium

Birkbeck College, London, UK
University of Calabria, Italy
BRICS, Denmark

Alexandra Poulovassilis
Francesco Scarcello
Michael Schwartzbach

Alan Schmitt INRIA Rhone-Alpes, France
Nicole Schweikardt Humboldt University, Berlin, Germany
David Toman University of Waterloo, Canada
Additional Referees

Fabrizio Angiulli William Cook
Alessandro Artale Giovanni Conforti
Pablo Barcelo Thierry Coupaye

Leo Bertossi Nick Crasswell

José Blakeley Wlodzimierz Drabent
Claus Brabrand Wolfgang Faber

Gilad Bracha Nate Foster

Cristiano Calcagno Eric Fusy

Dario Colazzo Vladimir Gapeyev

VIII Organization

Gianluigi Greco
Kenji Hashimoto
Zhenjiang Hu
Giovambattista Ianni
Kazuhiro Inaba
Shinya Kawanaka
Christian Kirkegaard
Leonid Libkin
Andrei Lopatenko
Ioana Manolescu
Paolo Manghi

Wim Martens

Elio Masciari
Anders Mgller
Keisuke Nakano
Nathaniel Nystrom
Atsushi Ohori

Sponsoring Institution

Microsoft Research

Dan Olteanu

Vanessa de Paula Braganholo
Andrea Pugliese
Mukund Raghavachari
Carlo Sartiani
Stefanie Scherzinger
Helmut Seidl

Jérome Siméon
Cristina Sirangelo
Keishi Tajima

Jens Teubner

Stijn Vansummeren
Roel Vercammen
Philip Wadler
Geoffrey Washburn
Grant Weddell

Lecture Notes in Computer Science

For information about Vols. 1-3735

please contact your bookseller or Springer

Vol. 3837: K. Cho, P. Jacquet (Eds.), Technologies for
Advanced Heterogeneous Networks. IX, 307 pages. 2005.

Vol. 3835: G. Sutcliffe, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. XIV,
744 pages. 2005. (Subseries LNAI).

Vol. 3833: K.-I. Li, C. Vangenot (Eds.), Web and Wireless
Geographical Information Systems. XI, 309 pages. 2005.

Vol. 3829: P. Pettersson, W. Yi (Eds.), Formal Modeling
and Analysis of Timed Systems. IX, 305 pages. 2005.

Vol. 3828: X. Deng, Y. Ye (Eds.), Internet and Network
Economics. XVII, 1106 pages. 2005.

Vol. 3826: B. Benatallah, F. Casati, P. Traverso (Eds.),
Service-Oriented Computing - ICSOC 2005. XVIII, 597
pages. 2005.

Vol. 3824: L.T. Yang, M. Amamiya, Z. Liu, M. Guo, F.J.
Rammig (Eds.), Embedded and Ubiquitous Computing.
XXIII, 1204 pages. 2005.

Vol. 3823: T. Enokido, L. Yan, B. Xiao, D. Kim, Y. Dai,
L.T. Yang (Eds.), Embedded and Ubiquitous Computing.
XXXII, 1317 pages. 2005.

Vol. 3822: D. Feng, D. Lin, M. Yung (Eds.), Information
Security and Cryptology. XII, 420 pages. 2005.

Vol. 3821: R. Ramanujam, S. Sen (Eds.), FSTTCS 2005:
Foundations of Software Technology and Theoretical
Computer Science. X1V, 566 pages. 2005.

Vol. 3820: L.T. Yang, X. Zhou, W. Zhao, Z. Wu, Y. Zhu.
M. Lin (Eds.), Embedded Software and Systems. XX VIII,
779 pages. 2005.

Vol. 3818: S. Grumbach, L. Sui, V. Vianu (Eds.), Advances
in Computer Science — ASIAN 2005. XIII, 294 pages.
2005.

Vol. 3815: E.A. Fox, E.J. Neuhold, P. Premsmit, V. Wu-
wongse (Eds.), Digital Libraries: Implementing Strategies
and Sharing Experiences. XVII, 529 pages. 2005.

Vol. 3814: M. Maybury, O. Stock, W. Wahlster (Eds.), In-
telligent Technologies for Interactive Entertainment. XV,
342 pages. 2005. (Subseries LNAI).

Vol. 3810: Y.G. Desmedt, H. Wang, Y. Mu, Y. Li (Eds.),
Cryptology and Network Security. XI, 349 pages. 2005.

Vol. 3809: S. Zhang. R. Jarvis (Eds.), Al 2005: Advances
in Artificial Intelligence. XX VII, 1344 pages. 2005. (Sub-
series LNAI).

Vol. 3808: C. Bento. A. Cardoso, G. Dias (Eds.), Progress
in Artificial Intelligence. XVIII, 704 pages. 2005. (Sub-
series LNAI).

Vol. 3807: M. Dean, Y. Guo, W. Jun, R. Kaschek, S. Kr-
ishnaswamy, Z. Pan, Q.Z. Sheng (Eds.), Web Information
Systems Engineering, — WISE 2005 Workshops. XV, 275
pages. 2005.

Vol. 3806: A.H. H. Ngu, M. Kitsuregawa, E.J. Neuhold,
J.-Y. Chung, Q.Z. Sheng (Eds.), Web Information Systems
Engineering — WISE 2005. XXI, 771 pages. 2005.

Vol. 3805: G. Subsol (Ed.), Virtual Storytelling. XII, 289
pages. 2005.

Vol. 3804: G. Bebis, R. Boyle, D. Koracin, B. Parvin
(Eds.), Advances in Visual Computing. XX, 755 pages.
2005.

Vol. 3803: S. Jajodia, C. Mazumdar (Eds.), Information
Systems Security. XI, 342 pages. 2005.

Vol. 3802:Y. Hao, J. Liu, Y. Wang, Y.-m. Cheung, H. Yin, L.
Jiao, J. Ma, Y.-C. Jiao (Eds.), Computational Intelligence
and Security. Part II. XLII, 1166 pages. 2005. (Subseries
LNAI).

Vol. 3801:Y. Hao, J. Liu, Y. Wang, Y.-m. Cheung, H. Yin, L.
Jiao, J. Ma, Y.-C. Jiao (Eds.), Computational Intelligence
and Security, Part 1. XLI, 1122 pages. 2005. (Subseries
LNAI).

Vol. 3799: M. A. Rodriguez, LF. Cruz, S. Levashkin, M.J.
Egenhofer (Eds.), GeoSpatial Semantics. X, 259 pages.
2005.

Vol. 3798: A. Dearle, S. Eisenbach (Eds.), Component
Deployment. X, 197 pages. 2005.

Vol. 3797: S. Maitra, C. E. V. Madhavan, R. Venkatesan
(Eds.), Progress in Cryptology - INDOCRYPT 2005. X1V,
417 pages. 2005.

Vol. 3796: N.P. Smart (Ed.), Cryptography and Coding.
XI, 461 pages. 2005.

Vol. 3795: H. Zhuge, G.C. Fox (Eds.), Grid and Coopera-
tive Computing - GCC 2005. XXI, 1203 pages. 2005.

Vol. 3794: X. Jia, J. Wu, Y. He (Eds.), Mobile Ad-hoc and
Sensor Networks. XX, 1136 pages. 2005.

Vol. 3793: T. Conte, N. Navarro, W.-m.W. Hwu, M. Valero,
T. Ungerer (Eds.), High Performance Embedded Architec-
tures and Compilers. XIII, 317 pages. 2005.

Vol. 3792: 1. Richardson, P. Abrahamsson, R. Messnarz
(Eds.), Software Process Improvement. VIII, 215 pages.
2005.

Vol. 3791: A. Adi, S. Stoutenburg, S. Tabet (Eds.), Rules
and Rule Markup Languages for the Semantic Web. X,
225 pages. 2005.

Vol. 3790: G. Alonso (Ed.), Middleware 2005. XIII, 443
pages. 2005.

Vol. 3789: A. Gelbukh, A. de Albornoz, H. Terashima-
Marin (Eds.), MICAI 2005: Advances in Artificial Intel-
ligence. XX VI, 1198 pages. 2005. (Subseries LNAI).
Vol. 3788: B. Roy (Ed.), Advances in Cryptology - ASI-
ACRYPT 2005. XIV, 703 pages. 2005.

Vol. 3785: K.-K. Lau, R. Banach (Eds.), Formal Methods
and Software Engineering. XIV, 496 pages. 2005.

Vol. 3784: J. Tao, T. Tan, R.W. Picard (Eds.), Affective
Computing and Intelligent Interaction. XIX, 1008 pages.
2005.

Vol. 3783: S. Qing, W. Mao, I. Lopez, G. Wang (Eds.), In-
formation and Communications Security. XIV, 492 pages.
2005.

Vol. 3781: S.7Z. 1.1, Z. Sun, T. Tan, S. Pankanti, G. Chollet,
D. Zhang (Eds.), Advances in Biometric Person Authen-
tication. XI, 250 pages. 2005.

Vol. 3780: K. Yi (Ed.), Programming Languages and Sys-
tems. XI, 435 pages. 2005.

Vol. 3779: H. Jin, D. Reed, W. Jiang (Eds.). Network and
Parallel Computing. XV, 513 pages. 2005.

Vol. 3778: C. Atkinson. C. Bunse, H.-G. Gross. C. Peper
(Eds.), Component-Based Software Development for Em-
bedded Systems. VIII, 345 pages. 2005.

Vol. 3777: O.B. Lupanov. O.M. Kasim-Zade, A.V.
Chaskin, K. Steinhofel (Eds.), Stochastic Algorithms:
Foundations and Applications. VIII. 239 pages. 2005.

Vol. 3775: J. Schonwiilder, J. Serrat (Eds.). Ambient Net-
works. XIII, 281 pages. 2005.

Vol. 3774: G. Bierman, C. Koch (Eds.). Database Pro-
gramming Languages. X, 295 pages. 2005.

Vol. 3773: A. Sanfeliu, M.L. Cortés (Eds.), Progress in Pat-
tern Recognition, Image Analysis and Applications. XX,
1094 pages. 2005.

Vol. 3772: M. Consens, G. Navarro (Eds.), String Process-
ing and Information Retrieval. XIV, 406 pages. 2005.

Vol. 3771: .M. T. Romijn, G.P. Smith, J. van de Pol (Eds.),
Integrated Formal Methods. XI, 407 pages. 2005.

Vol. 3770: J. Akoka, S.W. Liddle, 1.-Y. Song, M.
Bertolotto, 1. Comyn-Wattiau, W.-J. van den Heuvel, M.
Kolp, J. Trujillo, C. Kop, H.C. Mayr (Eds.), Perspectives
in Conceptual Modeling. XXII, 476 pages. 2005.

Vol. 3769: D.A. Bader, M. Parashar, V. Sridhar, V.K.
Prasanna (Eds.), High Performance Computing — HiPC
2003. XX VIII, 550 pages. 2005.

Vol. 3768: Y.-S. Ho, H.J. Kim (Eds.), Advances in Mul-
timedia Information Processing - PCM 2005, Part II.
XXVIII, 1088 pages. 2005.

Vol. 3767: Y.-S. Ho, H.J. Kim (Eds.). Advances in Mul-
timedia Information Processing - PCM 2005, Part I.
XXVIII, 1022 pages. 2005.

Vol. 3766: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 231
pages. 2005.

Vol. 3765: Y. Liu, T. Jiang, C. Zhang (Eds.), Computer
Vision for Biomedical Image Applications. X, 563 pages.
2005.

Vol. 3764: S. Tixeuil, T. Herman (Eds.), Self-Stabilizing
Systems. VIII, 229 pages. 2005.

Vol. 3762: R. Meersman, Z. Tari, P. Herrero (Eds.). On the
Move to Meaningful Internet Systems 2005: OTM 2005
Workshops. XXXI, 1228 pages. 2005.

Vol. 3761: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2005: CooplS, DOA, and
ODBASE, Part 1I. XXVII, 653 pages. 2005.

Vol. 3760: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2005: CooplS, DOA, and
ODBASE, Part I. XXVII, 921 pages. 2005.

Vol. 3759: G. Chen. Y. Pan, M. Guo. J. Lu (Eds.), Parallel
and Distributed Processing and Applications - [SPA 2005
Workshops. XIII, 669 pages. 2005.

Vol. 3758: Y. Pan, D.-x. Chen, M. Guo, I. Cao, 1.J. Don-
garra (Eds.), Parallel and Distributed Processing and Ap-
plications. XXITI, 1162 pages. 2005.

Vol. 3757: A. Rangarajan, B. Vemuri, A.L. Yuille (Eds.),
Energy Minimization Methods in Computer Vision and
Pattern Recognition. XII, 666 pages. 2005.

Vol. 3756: J. Cao. W. Nejdl, M. Xu (Eds.), Advanced Par-
allel Processing Technologies. XIV, 526 pages. 2005.

Vol. 3754: J. Dalmau Royo. G. Hasegawa (Eds.), Man-
agement of Mulimedia Networks and Services. XII, 384
pages. 2005.

Vol. 3753: O.F. Olsen, L.M.1. Florack, A. Kuijper (Eds.),
Deep Structure, Singularities, and Computer Vision. X,
259 pages. 2005.

Vol. 3752: N. Paragios, O. Faugeras, T. Chan, C. Schnorr
(Eds.), Variational, Geometric, and Level Set Methods in
Computer Vision. XI, 369 pages. 2005.

Vol. 3751: T. Magedanz, E.R. M. Madeira, P. Dini (Eds.),
Operations and Management i IP-Based Networks. X,
213 pages. 2005.

Vol. 3750: 1.S. Duncan, G. Gerig (Eds.), Medical Image
Computing and Computer-Assisted Intervention — MIC-
CAI 2005, Part I1. XL, 1018 pages. 2005.

Vol. 3749: J.S. Duncan, G. Gerig (Eds.), Medical Image
Computing and Computer-Assisted Intervention — MIC-
CAI 2005, Part I. XXXIX, 942 pages. 2005.

Vol. 3748: A. Hartman, D. Kreische (Eds.), Model Driven

Architecture — Foundations and Applications. 1X, 349
pages. 2005.

Vol. 3747: C.A. Maziero, J.G. Silva, A.M.S. Andrade,
FM.d. Assis Silva (Eds.), Dependable Computing. XV,
267 pages. 2005.

Vol. 3746: P. Bozanis, E.N. Houstis (Eds.), Advances in
Informatics. XIX, 879 pages. 2005.

Vol. 3745: J.L. Oliveira, V. Maojo, F. Martin-Sanchez, A.S.
Pereira (Eds.), Biological and Medical Data Analysis. XII,
422 pages. 2005. (Subseries LNBI). ;

Vol. 3744: T. Magedanz, A. Karmouch, S. Pierre, 1. Ve-
nieris (Eds.), Mobility Aware Technologies and Applica-
tions. XIV, 418 pages. 2005.

Vol. 3742: J. Akiyama, M. Kano, X. Tan (Eds.), Discrete
and Computational Geometry. VIII, 213 pages. 2005.
Vol. 3740: T. Srikanthan, J. Xue, C.-H. Chang (Eds.),
Advances in Computer Systems Architecture. XVII, 833
pages. 2005.

Vol.3739: W. Fan, Z. Wu, J. Yang (Eds.), Advances in Web-
Age Information Management. XXIV. 930 pages. 2005.
Vol. 3738: V.R. Syrotiuk, E. Chavez (Eds.), Ad-Hoc, Mo-
bile, and Wireless Networks. X1, 360 pages. 2005.

Vol. 3737: C. Priami, E. Merelli, P. Gonzalez, A. Omicini

(Eds.), Transactions on Computational Systems Biology
M1 VII, 169 pages. 2005. (Subseries LNBI).

Table of Contents

Patterns and Types for Querying XML Documents
GIUSEDDE CaSIAUTE : o s msmo cmsm o s aism e s 5% e s @R a8 M b £ 53R PS50 8003 1

Dual Syntax for XML Languages
Claus Brabrand, Anders Mgller, Michael I. Schwartzbach 27

Exploiting Schemas in Data Synchronization
J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard,
Bengjamin C. Pierce, Alan Schmitt 42

Efficiently Enumerating Results of Keyword Search
Benny Kimelfeld, Yehoshua Sagiv, 58

Mapping Maintenance in XML P2P Databases
Dario Colazzo, Carlo Sartiani i, 74

Inconsistency Tolerance in P2P Data Integration: An Epistemic Logic
Approach

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,

Maurizio Lenzerini, Riccardo Rosatic..c.c.ccuuuuiu... 90

XML Data Integration with Identification
Antonella Poggi, Serge Abiteboul 106

Satisfiability of XPath Queries with Sibling Axes
Floris Geerts, Wenfei Fan .u.o:inisesnsnssmsmssssassms sasinsas i 122

XML Subtree Queries: Specification and Composition
Michael Benedikt, Irini Fundulaki 138

On the Expressive Power of XQuery Fragments
Jan Hidders, Stefania Marrara, Jan Paredaens, Roel Vercammen 154

A Type Safe DOM API
Peter Thiemamn e 169

Type-Based Optimization for Regular Patterns
Michael Y. Levin, Benjamin C. Piercec.....c..... 184

Efficient Memory Representation of XML Documents
Giorgio Busatto, Markus Lohrey, Sebastian Maneth 199

X Table of Contents

N-Ary Queries by Tree Automata
Joachim Niehren, Laurent Planque, Jean-Marc Talbot,
Sophie TISOMo

Minimizing Tree Automata for Unranked Trees
Wim Martens, Joachim Niehrenc.ccuuiiiiinunnunean..

Dependency-Preserving Normalization of Relational and XML Data
Solmaz Kolahi

Complexity and Approximation of Fixing Numerical Attributes in
Databases Under Integrity Constraints

Leopoldo Bertossi, Loreto Bravo, Enrico Franconi,

Andret Lopatenko . cimu:usmsinimainsoasssemies $min6snimaineissms

Consistent Query Answers on Numerical Databases Under Aggregate

Constraints
Sergio Flesca, Filippo Furfaro, Francesco Parisi....................

Author Index

Patterns and Types for Querying XML Documents

Giuseppe Castagna

CNRS, Ecole Normale Supérieure de Paris, France

Abstract. Among various proposals for primitives for deconstructing XML data
two approaches seem to clearly stem from practice: path expressions, widely
adopted by the database community, and regular expression patterns, mainly de-
veloped and studied in the programming language community. We think that the
two approaches are complementary and should be both integrated in languages
for XML, and we see in that an opportunity of collaboration between the two
communities. With this aim, we give a presentation of regular expression pat-
terns and the type systems they are tightly coupled with. Although this article
advocates a construction promoted by the programming language community,
we will try to stress some characteristics that the database community, we hope,
may find interesting.

1 Introduction

Working on XML trees requires at least two different kinds of language primitives:
(7) deconstruction/extraction primitives (usually called patterns or templates) that pin-
point and capture subparts of the XML data, and (i) iteration primitives, that iterate
over XML trees the process of extraction and transformation of data.

Concerning iteration primitives, there are many quite disparate proposals: in this
category one can find such different primitives as the FLWR (i.e., for-let-where-return)
expressions of XQuery [7], the filter primitive of XDuce [40, 39], the xtransform
primitive of CDuce [4], the iterate primitive of Xtatic [31], the select-from-where of
Cw [6] and CQL [5], the select-where of Lorel [1] and loto-ql [51], while for other
languages, for instance XSLT [22], the iterator is hard-coded in the semantics itself of
the language.

Concerning deconstructing primitives, instead, the situation looks clearer since,
among various proposals (see the related work section later on), two different and
complementary solutions clearly stem from practice: path expressions (usually XPath
paths [21], but also the “dot” navigations of Cw or Lorel [1], caterpillar expressions [12]
and their “looping” extension [33]) and regular expression patterns [41].

Path expressions are navigational primitives that pinpoint where to capture data sub-
components. XML path expressions (and those of Cw and Lorel in particular) closely
resemble the homonimic primitives used by OQL [23] in the context of OODB query
languages, with the difference that instead of sets of objects they return sets or se-
quences of XML elements: more precisely all elements that can be reached by follow-
ing the paths at issue. These primitives are at the basis of standard languages such as
XSLT and XQuery.

More recently, a new kind of deconstruction primitive was proposed: regular expres-
sion patterns [41], which extends by regular expressions the pattern matching primitive

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 1-26, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 G. Castagna

as popularised by functional languages such as ML and Haskell. Regular expression
patterns were first introduced in the XDuce programming language and are becoming
more and more popular, since they are being adopted by such quite different languages
as CDuce [4] (a general purpose extension of the XDuce language) and its query lan-
guage CQL [5], Xtatic [31] (an extension of C#), Scala [54] (a general purpose Java-
like object-oriented language that compiles to Java bytecode), XHaskell [45] as well as
the extension of Haskell proposed by Broberg et al. [11].

The two kinds of primitives are not antagonist, but rather orthogonal and comple-
mentary. Path expressions implement a “vertical” exploration of data as they capture
elements that may be at different depths, while patterns perform a “horizontal” explo-
ration of data since they are able to perform finer grained decomposition on sequences
of elements. The two kinds of primitives are quite useful and they complement each
other nicely. Therefore, it would seem natural to integrate both of them in a query or
programming language for XML. In spite of this and of several theoretical works on
the topic (see the related work section), we are aware of just two running languages
in which both primitives are embedded (and, yet, loosely coupled): in CQL [5] it is
possible to write select-from-where expressions, where regular expression patterns are
applied in the from clause to sequences that are returned by XPath-like expressions (see
the example at the end of Section 2.3); Gapeyev and Pierce [32] show how it is possible
to use regular expression patterns with an all-matches semantics to encode a subset of
XPath and use this encoding to add XPath to the Xtatic programming language.

The reason for the lack of study of the integration of these two primitives may be
due to the fact that each of them is adopted by a different community: regular patterns
are almost confined to the programming language community while XPath expressions
are pervasive in the database community.

The goal of this lecture is to give a brief presentation of the regular pattern expres-
sions style together with the type system they are tightly coupled with, that is the se-
mantic subtyping-based type systems [19,29]. We are not promoting the use of these
to the detriment of path expressions, since we think that the two approaches should be
integrated in the same language and we see in that a great opportunity of collaboration
between the database and the programming languages communities. Since the author
belongs to latter, this lecture tries to describe the pattern approach addressing some
points that, we hope, should be of interest to the database community as well. In par-
ticular, after a general overview of regular expression patterns and types (Section 2) in
which we show how to embed patterns in a select-from-where expression, we discuss
several usages of these semantic subtyping based patterns/types (henceforward, we will
often call them “semantic patterns/types”): how to use these patterns and types to give
informative error messages (Section 3.2), to dig out errors that are out of reach of pre-
vious type checker technologies (Section 3.3) and how the static information they give
can be used to define very efficient and highly optimised runtimes (Section 3.4); we
show that these patterns permit new logical query optimisations (Section 3.5) and can
be used as building blocks to allow the programmer to fine-grainedly define new iter-
ators on data (Section 3.6); finally, the techniques developed for the semantic patterns
and types can be used to define optimal data pruning and other optimisation techniques
(Section 3.7-3.8)

Patterns and Types for Querying XML Documents 3

Related Work. In this work we focus on data extraction primitives coming from the
practice of programming and query languages manipulating XML data. Thus, we re-
strict our attention to the primitives included in full-featured languages with a stable
community of users. There are however many other proposals in the literature for de-
constructing, extracting, and querying XML data.

First and foremost there are all the languages developed from logics for unranked
trees whose yardstick in term of expressiveness is the Monadic Second Order Logic.
The list here would be too long and we invite the interested reader to consult the excel-
lent overview by Leonid Libkin on the subject [44]. In this area we want to single out
the work on composition of monadic queries in [26], since it looks as a promising step
toward the integration of path and pattern primitives we are promoting in this work: we
will say more about it in the conclusion. A second work that we want to distinguish
is Neven and Schwentick’s ETL [49], where regular expressions over logical formula
allow both horizontal and vertical exploration of data; but, as the authors themselves re-
mark, the gap with a usable pattern language is very important, especially if one wants
to define non-unary queries typical of Hosoya’s regular expressions patterns.

Based on logics also are the query languages developed on or inspired to Ambient
Logic, a modal logic that can express spatial properties on unordered trees, as well as
to other spatial logics. The result is a very interesting mix of path-like and pattern-like
primitives (cf. the dot notation and the spatial formul® with capture variables that can
be found in TQL) [24, 13, 16, 14, 15, 17].

In the query language research, we want to signal the work of Papakonstantinou and
Vianu [51] where the loto-ql query language is introduced. In loto-ql it is possible to
write select x where p, where p is a pattern in the form of tree which uses regular
expressions to navigate both horizontally and vertically in the input tree, and provides
bindings of x.

2 A Brief Introduction to Patterns and Types for XML

In this section we give a short survey of patterns and types for XML. We start with a pre-
sentation of pattern matching as it can be found in functional languages (Section 2.1),
followed by a description of “semantic” types and of pattern-based query primitives
(Section 2.2); a description of regular expression patterns for XML (Section 2.3) and
their formal definition (Section 2.4) follow, and few comments on iterators (Section 2.5)
close the section. Since we introduce early in this section new concepts and notations
that will be used in the rest of the article, we advise also the knowledgeable reader to
consult it.

2.1 Pattern Matching in Functional Languages

Pattern matching is used in functional languages as a convenient way to capture subparts
of non-functional' values, by binding them to some variables. For instance, imagine that

! We intend non-functional in a strict sense. So non-functional values are integer and boolean
constants, pair of values, record of values, etc., but not A-abstractions. Similarly a non-
functional type is any type that is not an arrow type.

4 G. Castagna

e is an expression denoting a pair and that we want to bind to x and y respectively to
the first and second projection of e, so as to use them in some expression ¢’. Without
patterns this is usually done by two let expressions:

let x = first(e) in
let y = second(e) in €

With patterns this can be obtained by a single let expression:
let (x,y) = e in €

The pattern (x,y) simply reproduces the form of the expected result of e and variables
indicate the parts of the value that are to be captured: the value returned by e is matched
against the pattern and the result of this matching is a substitution; in the specific case, it
is the substitution that assigns the first projection of (the result of) e to x and the second

one to y.
If we are not interested in capturing all the parts that compose the result of e, then
we can use the wildcard “_"" in correspondence of the parts we want to discard. For

instance, in order to capture just the first projection of e, we can use the following
pattern:

let (x,_) = e in ...

which returns the substitution that assigns the result of firsz(e) to x. In general, a pattern
has the form of a value in which some sub-occurrences are replaced by variables (these
correspond to parts that are to be captured) and other are replaced by “_” (these corre-
spond to parts that are to be discarded). A value is then matched against a pattern and if
they both have the same structure, then the matching operation returns the substitution
of the pattern variables by the corresponding occurrences of the value. If they do not
have the same structure the matching operation fails. Since a pattern may fail-—and here
resides the power of pattern matching—it is interesting to try on the same value several
different patterns. This is usually done with a match expression, where several patterns,
separated by |, are tried in succession (according to a so-called “first match” policy).

For instance:

match ¢ with
| (_,_) -> true
-> false

first checks whether e returns a pair in which case it returns true, otherwise it returns
false. Note that, in some sense, matching is not very different from a type case. Ac-
tually, if we carefully define the syntax of our types, in particular if we use the same
syntax for constructing types and their values, then the match operation becomes a type
case: let us write (s,7) for the product type of the types s and ¢ (instead of the more
common s X f or s*¢ notations) and use the wildcard “_" to denote the super-type of all
types (instead of the more common Top, 1, or T symbols), then the match expression
above is indeed a type case (if the result of e is in the product type (_,_) —the type
of all products—, then return true else if it is of type top—all values have this type—,
then return false). We will see the advantages of such a notation later on, for the time

Patterns and Types for Querying XML Documents 5

being just notice that with such a syntactic convention for types and values, a pattern is
a (non-functional) type in which some variables may appear.

Remark 1. A pattern is just a non-functional type where some occurrences may be
variables.

The matching operation is very useful in the definition of functions, as it allows the
programmer to define them by cases on the input. For instance, imagine that we en-
code lists recursively a la lisp, that is, either by a nil element for the empty list, or
by pairs in which the left projection is the head and the right projection the tail of the
list. With our syntax for products and top this corresponds to the recursive definition
List = ‘nil | (_,List):alistis either ‘nil (we use a back-quote to denote constants
so to syntactically distinguish them in patterns from variables) or the product of any
type and a list. We can now write a tail recursive function? that computes the length of
alist®

fun length ((List,Int) -> Int)
| (‘nil , n) -> n
| ((_,t), n) -> length(t,n+1)

which is declared (see Footnote 3 for notation) to be of type (List,Int) -> Int,thatis,
it takes a pair composed of a list and an integer and returns an integer. More precisely, it
takes the list of elements still to be counted and the number of elements already counted
(thus length(a,0) computes the length of the list a). If the list is ‘nil, then the function
returns the integer captured by the pattern variable n, otherwise it discards the head of
the list (by using a wildcard) and performs a recursive call on the tail, captured in t,
and on n+1. Note that, as shown by the use of ‘nil in the first pattern, patterns can also
specify values. When a pattern contains a value v, then it matches only values in which
the value v occurs in the same position. Remark 1 is still valid even in the case that
values occur in patterns, since we can still consider a pattern as a type with variables:
it suffices to consider a value as being the denotation of the singleton type that contains
that value.

2 A function is tail recursive if all recursive calls in its definition occur at the end of its execu-
tion flow (more precisely, it is tail recursive if the result of every call is equal to result of its
recursive calls): this allows the compiler to optimise the execution of such functions, since it
then becomes useless to save and restore the state of recursive calls since the result will be
pushed on the top of the stack by the last recursive call.

3 We use two different syntaxes for functions. The usual notation is standard: for instance, the
identity function on integers will be written as fun id(x :Int) :Int = x. Butif we want to
feed the arguments of a function directly to a pattern matching, then the name of the function
will be immediately followed by the type of the function itself. In this notation the identity for
integers is rather written as fun id(Int->Int) x -> x. This is the case for the function
length that follows, which could be equivalently defined as

fun length (x :(List,Int)):Int =
match x with

| (‘nil , n) -> n

| ((_,t), n) -> length(t,n+1)

6 G. Castagna
2.2 Union, Intersection, and Difference Types

In order to type-check match expressions, the type-checker must compute unions, in-
tersections, and differences (or, equivalently, negations) of types: let us denote these
operations by | for the union, & for the intersection, and \ for the difference. The reason
why the type-checker needs to compute them can be better understood if we consider a
type as a set of values, more precisely as the set of values that have that type: 1 = {v | v
value of type }*. For instance, the product of the singleton type ‘nil and of the type
Int, denoted by (¢nil,Int), will be the set of all pairs in which the first element is the
constant ‘nil and the second element is an integer. Notice that we already implicitly did
such an hypothesis at the end of the previous section, when we considered a singleton
type as a type containing just one value.

As we did for types, it is possible to associate also patterns to sets of values (actually,
to types). Specifically, we associate to a pattern p the type | p§ defined as the set of val-
ues for which the pattern does not fail:] p§ = {v | v matches pattern p}. Since we use the
same syntax for type constructors and value constructors, it results quite straightforward

to compute] pf: it is the type obtained from p by substituting “_" for all occurrences of
variables: the occurrences of values are now interpreted as the corresponding singleton
types.

Let us check whether the function length has the type (List,Int) — Int it declares
to have. The function is formed by two branches, each one corresponding to a differ-
ent pattern. To know the type of the first branch we need to know the set of values
(i.e., the type) that can be bound to n; the branch at issue will be selected and exe-
cuted only for values that are arguments of the function—so that are in (List,Int)—
and that are accepted by the pattern of the branch—so that are in] (‘nil,n){ which
by definition is equal to (‘nil,_)—. Thus, these are the values in the intersection
(List,Int)&(‘nil,_). By distributing the intersection on products and noticing that
List&‘nil= ‘nil and Int&_= Int, we deduce that the branch is executed for values in
(‘nil,Int) and thus n is (bound to values) of type Int. The second branch returns a
result of type Int (the result type declared for the function) provided that the recursive
call is well-typed. In order to verify it, we need once more to compute the set of values
for which the branch will be executed. These are the arguments of the function, minus
the values accepted by the first branch, and intersected with the set of values accepted
by the pattern of second branch, that is: ((List,Int)/(‘nil,_)) & ((_,_),_.). Again,
it is easy to see that this type is equal to ((_,List),Int) and deduce that variable 7 is
of type List and the variable n is of type Int: since the arguments have the expected
types, then the application of the recursive call is well typed. The type of the result of
the whole function is the union of the types of the two branches: since both return in-
tegers the union is integer. Finally, notice also that the match is exhaustive, that is, for
every possible value that can be fed to the match, there exists at least one pattern that
matches it. This holds true because the set of all arguments of the the function (that is,
its domain) is contained in the union of the types accepted by the patterns.

4 Formally, we are not defining the types, we are giving their semantics. So a type “is interpreted
as” or “denotes” a set of values. We prefer not to enter in such a distinction here. See [19] for
a more formal introduction about these types.

