Chi-Hung Chi
Maarten van Steen
Craig Wills (Eds.)

Web Content Caching
and Distribution

9th International Workshop, WCW 2004
Beijing, China, October 2004
Proceedings

LNCS 3293

@ Springer

Chi-Hung Chi Maarten van Steen
Craig Wills (Eds.)

Web Content Caching
and Distribution

9th International Workshop, WCW 2004
Beijing, China, October 18-20, 2004
Proceedings

@ Springer

Volume Editors

Chi-Hung Chi

National University of Singapore

School of Computing

Lower Kent Ridge Road, Singapore 119260
E-mail: chich@comp.nus.edu.sg

Maarten van Steen

Vrije Universiteit Amsterdam

Department of Computer Science

De Boelelaan 1081a, 1081 HC Amsterdam, The Netherlands
E-mail: steen@cs.vu.nl

Craig Wills

Worcester Polytechnic Institute

Computer Science Department

100 Institute Road, Worcester, MA 01609, USA
E-mail: cew @cs.wpi.edu

Library of Congress Control Number: 2004113293

CR Subject Classification (1998): C.2, H4,D.1.3, D.4.4, H.5

ISSN 0302-9743
ISBN 3-540-23516-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Protago-TeX-Production GmbH
Printed on acid-free paper SPIN: 11335207 06/3142 543210

Preface

Since the start of the International Workshop on Web Caching and Content
Distribution (WCW) in 1996, it has served as the premiere meeting for researchers
and practitioners to exchange results and visions on all aspects of content caching,
distribution, and delivery. Building on the success of the previous WCW meetings,
WCW 2004 extended its scope and covered interesting research and deployment areas
relating to content services as they move through the Internet.

This year, WCW was held in Beijing, China. Although it was the first time that WCW
was held in Asia, we received more than 50 high quality papers from five continents.
Fifteen papers were accepted as regular papers and 6 papers as synopses to appear in
the proceedings. The topics covered included architectural issues, routing and
placement, caching in both traditional content delivery networks as well as in peer-to-
peer systems, systems management and deployment, and performance evaluation.

We would like to take this opportunity to thank all those who submitted papers to
WCW 2004 for their valued contribution to the workshop. This event would not have
been possible without the broad and personal support and the invaluable suggestions
and contributions of the members of the program committee and the steering
committee.

August 2004 Chi-Hung Chi
Maarten van Steen
Craig Wills

VI Program Committee

General Chair
Chi-Hung Chi
Kwok-Yan Lam

Steering Committee
Azer Bestavros

Pei Cao

Jeff Chase

Brian Davison

Fred Douglis

Michael Rabinovich

Duane Wessels

Program Committee
Maarten van Steen (chair)
Craig Wills (vice-chair)
Gustavo Alonso
Chin-Chen Chang
Chi-Hung Chi

Michele Colajanni

Mike Dahlin

Magnus Karlsson

Ihor Kuz

Kwok-Yan Lam

Dan Li

Pablo Rodriguez

Oliver Spatscheck

Geoff Voelker

Limin Wang

Tao Wu

Zheng Zhang

Table of Contents

Session I: Placement and Redirection

DotSlash: A Self-Configuring and Scalable Rescue System
for Handling Web Hotspots Effectively........... 1
Weibin Zhao, Henning Schulzrinne

Dynamic Content Placement

for Mobile Content Distribution Networks............................ 19
Wagner M. Aioffi, Geraldo R. Mateus, Jussara M. Almeida,
Raquel C. Melo

Overhaul (Extending HTTP to Combat Flash Crowds) 34
Jay A. Patel, Indranil Gupta

Session II: Structured Overlays

ShortCuts: Using Soft State to Improve DHT Routing 44
Kiran Tati, Geoffrey M. Voelker

Distributed Hashtable on Pre-structured Overlay Networks 63
Kai Shen, Yuan Sun

Session III: Architectural Issues

Application Networking — An Architecture
for Pervasive Content Delivery 82
Mu Su, Chi-Hung Chi

Data Integrity Framework and Language Support

for Active Web Intermediaries, 94
Chi-Hung Chi, Xiao-Yan Yu, Wenjie Zhang, Chen Ding,
Weng-Fai Wong

Xeja: A Scalable Channel-Based Multi-source
Content Distribution System 106
Pei Zheng, Chen Wang

Session IV: Multimedia Caching

Segment-Based Adaptive Caching for Streaming Media Delivery
On the TRHEITEE . 2o v sivmiwswmsmamo essmssaisen s o asismacismibins emes 116
ShaoHua Qin, ZiMu Li, QingSong Cai, JianPing Hu

VIII Table of Contents

A Client-Based Web Prefetching Management System Based
on Detection TReoTY :«isswsmasmsnsosnsgvmswessgsmimesssnemsssnseeme o 129
Kelvin Lau, Yiu-Kai Ng

Structured Partially Caching Proxies for Mixed Media 144
Frank T. Johnsen, Carsten Griwodz, Pal Halvorsen

Session V: Caching in Peer-to-Peer Systems

Performance Evaluation of Distributed Prefetching
for Asynchronous Multicast in P2P Networks......................... 154
Abhishek Sharma, Azer Bestavros, Ibrahim Matta

On the Equivalence of Forward and Reverse Query Caching
in Peer-to-Peer Overlay Networks, 169
Ali Raza Butt, Nipoon Malhotra, Sunil Patro, Y. Charlie Hu

Session VI: Algorithms

FatNemo: Building a Resilient Multi-source Multicast Fat-Tree 182
Stefan Birrer, Dong Lu, Fabian E. Bustamante, Yi Qiao, Peter Dinda

A Real-Time Selection Method of an Acceptable Transcoding Path
in a MPEG21 DIA for Mobile Terminals 197

Sungmi Chon, Younghwan Lim

Design and Analysis of a Variable Bit Rate Caching Algorithm
for Continuous Media Data........... 209
Ligang Dong, Bharadwaj Veeravalli

Session VII: Systems Management

A Configuration Tool for Caching Dynamic Pages 219
Ikram Chabbouh, Mesaac Makpangou

Towards Informed Web Content Delivery 232
Leeann Bent, Michael Rabinovich, Geoffrey M. Voelker, Zhen Xiao

Session VIII: Systems Evaluation

Unveiling the Performance Impact of Lossless Compression
to Web Page Content Delivery 249
Jun-Li Yuan, Chi-Hung Chi

An Empirical Study of a Segment-Based Streaming Proxy
in an Enterprise Environment 261
Sumit Roy, Bo Shen, Songqing Chen, Xiaodong Zhang

Table of Contents X

Bottlenecks and Their Performance Implications
in E-commerce Systems 273
Qi Zhang, Alma Riska, Erik Riedel, Evgenia Smirni

Author Index ... 283

DotSlash: A Self-Configuring and Scalable Rescue
System for Handling Web Hotspots Effectively”

Weibin Zhao and Henning Schulzrinne

Columbia University, New York NY 10027, USA
{zwb,hgs}@cs. columbia.edu

Abstract. DotSlash allows different web sites to form a mutual-aid community,
and use spare capacity in the community to relieve web hotspots experienced
by any individual site. As a rescue system, DotSlash intervenes when a web site
becomes heavily loaded, and is phased out once the workload returns to normal.
It aims to complement the existing web server infrastructure to handle short-term
load spikes effectively. DotSlash is self-configuring, scalable, cost-effective, easy
to use, and transparent to clients. It targets small web sites, although large web
sites can also benefit from it. We have implemented a prototype of DotSlash on
top of Apache. Experiments show that using DotSlash a web server can increase
the request rate it supported and the data rate it delivered to clients by an order
of magnitude, even if only HTTP redirect is used. Parts of this work may be
applicable to other services such as Grid computational services.

1 Introduction

As more web sites experience a request load that can no longer be handled by a single
server, using multiple servers to serve a single site becomes a widespread approach.
Traditionally, a distributed web server system has used a fixed number of dedicated
servers based on capacity planning, which works well if the request load is relatively
consistent and matches the planned capacity. However, web requests could be very bursty.
A well-identified problem web hotspots (also known as flash crowds or the Slashdot
effect [2]) may trigger a large load increase but only last for a short time [14,24]. For
such situations, overprovisioning a web site is not only uneconomical but also difficult
since the peak load is hard to predict [16].

To handle web hotspots effectively, we advocate dynamic allocation of server ca-
pacity from a server pool distributed globally because the access link of a local network
could become a bottleneck. As an example of global server pools, content delivery net-
works (CDNs) [27] have been used by large web sites, but small web sites often cannot
afford the cost particularly since they may need these services very rarely. We seek a
more cost-effective mechanism. As different web sites (e.g., different types or in differ-
ent locations) are less likely to experience their peak request loads at the same time, they
could form a mutual-aid community, and use spare capacity in the community to relieve
web hotspots experienced by any individual site [10]. Based on this observation, we
designed DotSlash which allows a web site to build an adaptive distributed web server

* This work was supported in part by the National Science Foundation (ANI-0117738).

C.-H. Chi, M. van Steen, and C. Wills (Eds.): WCW 2004, LNCS 3293, pp. 1-18, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

2 W. Zhao and H. Schulzrinne

system on the fly to expand its capacity by utilizing spare capacity at other sites. Using
DotSlash, a web site not only has a fixed set of origin servers, but also has a changing
set of rescue servers drafted from other sites. A web server allocates and releases rescue
servers based on its load conditions. The rescue process is completely self-managing
and transparent to clients.

DotSlash does not aim to support a request load that is persistently higher than a web
site’s planned capacity, but rather to complement the existing web server infrastructure to
handle short-term load spikes effectively. We envision a spectrum of mechanisms for web
sites to handle load spikes. Infrastructure-based approaches should handle the request
load sufficiently in most cases (e.g., 99.9% of time), but they might be too expensive
for short-term enormous load spikes and insufficient for unexpected load increases. For
these cases, DotSlash intervenes so that a web site can support its request load in more
cases (e.g., 99.999% of time). In parallel, a web site can use service degradation [1] such
as turning off dynamic content and serving a trimmed version of static content under
heavily-loaded conditions. As the last resort, a web site can use admission control [31]
to reject a fraction of requests and only admit preferred clients.

DotSlash has the following advantages. First, it is self-configuring in that service
discovery [13] is used to allow servers of different web sites to learn about each other
dynamically, rescue actions are triggered automatically based on load conditions, and a
rescue server can serve the content of its origin servers on the fly without the need of
any advance configuration. Second, it is scalable because a web server can expand its
capacity as needed by using more rescue servers. Third, it is very cost-effective since
it utilizes spare capacity in a web server community to benefit any participating server,
and it is built on top of the existing web server infrastructure, without incurring any
additional hardware cost. Fourth, it is easy to use because standard DNS mechanisms
and HTTP redirect are used to offload client requests from an origin server to its rescue
servers, without the need of changing operating system or DNS server software. An add-
on module to the web server software is sufficient to support all needed functions. Fifth,
it is transparent to clients since it only uses server-side mechanisms. Client browsers
remain unchanged, and client bookmarks continue to work. Finally, an origin server has
full control of its own rescue procedure, such as how to choose rescue servers and when
to offload client requests to rescue servers.

DotSlash targets small web sites, although large web site can also benefit from it. We
focus on load migration for static web pages in this paper, and plan to investigate load
migration for dynamic content in the next stage of this project. Parts of this work may be
applicable to other services such as Grid computational services [12]. The remainder of
this paper is organized as follows. We discuss related work in Section 2, give an overview
of DotSlash in Section 3, present DotSlash design, implementation and evaluation in
Section 4, 5 and 6, respectively, and conclude in Section 7.

2 Related Work

Caching [29] provides many benefits for web content retrieval, such as reducing band-
width consumption and client-perceived latency. Caching may appear at several different
places, such as client-side proxy caching, intermediate network caching, and server-side

DotSlash: A Self-Configuring and Scalable Rescue System 3

reverse caching, many of which are not controlled by origin web servers. DotSlash uses
caching at rescue servers to relieve the load spike at an origin server, where caching is
set up on demand and fully controlled by the origin server.

CDN [27] services deliver part or all of the content for a web site to improve the
performance of content delivery. As an infrastructure-based approach, CDN services are
good for reinforcing a web site in a long run, but less efficient for handling short-term
load spikes. Also, using CDN services needs advance configurations such as contracting
with a CDN provider and changing the URIs of offloading objects (e.g., Akamaized
[3]). As an alternative mechanism to CDN services, DotSlash offers cost-effective and
automated rescue services for better handling short-term load spikes.

Distributed web server systems are a widespread approach to support high request
loads and reduce client-perceived delays. These systems often use replicated web servers
(e.g., ScalaServer [5] and GeoWeb [9]), with a focus on load balancing and serving a
client request from the closest server. In contrast, DotSlash allows an origin server to
build a distributed system of heterogeneous rescue servers on demand so as to relieve the
heavily-loaded origin server. DC-Apache [17] supports collaborations among heteroge-
neous web servers. However, it relies on static configuration to form collaborating server
groups, which limits its scalability and adaptivity to changing environments. Also, DC-
Apache incurs a cost for each request by generating all hyperlinks dynamically. DotSlash
addresses these issues by forming collaborating server groups dynamically, and using
simpler and widely applicable mechanisms to offload client requests. Backslash [25] sug-
gests using peer-to-peer (P2P) overlay networks to build distributed web server systems
and using distributed hash table to locate resources.

The Internet Engineering Task Force (IETF) has developed a model for content
internetworking (CDI) [11,23]. The DotSlash architecture appears to be a special case
of the CDI architecture, where each web server itself is a content network. However,
the CDI framework does not address the issue of using dynamic server allocation and
dynamic rate adjustment based on feedback to handle short-term load spikes, which is
the main focus of DotSlash.

Client-side mechanisms allow clients to help each other so as to alleviate server-side
congestion and reduce client-perceived delays. An origin web server can mediate client
cooperation by redirecting a client to another client that has recently downloaded the URI,
e.g., Pseudoserving [15] and CoopNet [20]. Clients can also form P2P overlay networks
and use search mechanisms to locate resources, e.g., PROOFS [26] and BitTorrent [7].
Client-side P2P overlay networks have advantages in sharing large and popular files,
which can reduce request loads at origin web servers. In general, client-side mechanisms
scale well as the number of clients increases, but they are not transparent to clients, which
are likely to prevent widespread deployment.

Grid technologies allow “coordinated resource sharing and problem solving in dy-
namic, multi-institutional organizations" [12], with a focus on large-scale computational
problems and complex applications. The sharing in Grid is broader than simply file ex-
change; it can involve direct access to computers, software, data, and other resources. In
contrast, DotSlash employs inter-web-site collaborations to handle web hotspots effec-
tively, with an emphasis on overload control at web servers and disseminating popular
files to a large number of clients.

4 W. Zhao and H. Schulzrinne

Fig. 1. An example for DotSlash rescue relationships

3 DotSlash Overview

DotSlash uses a mutual-aid rescue model. A web server joins a mutual-aid community
by registering itself with a DotSlash service registry, and contributing its spare capacity
to the community. In case of being heavily loaded, a participating server discovers and
uses spare capacities at other servers in its community via DotSlash rescue services. In
our current prototype, DotSlash is intended for a cooperative environment, and thus no
payment is involved in obtaining rescue services.

In DotSlash, a web server is in one of the following states at any time: SOS state if it
gets rescue services from others, rescue state if it provides rescue services to others, and
normal state otherwise. These three states are mutually exclusive: a server is not allowed
to get a rescue service as well as to provide a rescue service at the same time. Using
this rule can avoid complex rescue scenarios (e.g., a rescue loop where S; requests
a rescue service from S;, S, requests a rescue service from Sz, and S3 requests a
rescue service from S;), and keep DotSlash simple and robust without compromising
scalability. Throughout this paper, we use the notation origin server and rescue server in
the following way. When two servers set up a rescue relationship, the one that benefits
from the rescue service is the origin server, and the one that provides the rescue service is
the rescue server. Fig. 1 shows an example of rescue relationships for eight web servers,
where an arrow from S, to S, denotes that S, provides a rescue service to S,.. In this
figure, S; and S5 are origin servers, S3, Sy, S5 and Sg are rescue servers, and S7 and
Sg have not involved themselves with rescue services.

3.1 Rescue Examples

In DotSlash, an origin server uses HTTP redirect and DNS round robin to offload client
requests to its rescue servers, and a rescue server serves as a reverse caching proxy for
its origin servers. There are four rescue cases: (1) HTTP redirect (at the origin server)
and cache miss (at the rescue server), (2) HTTP redirect and cache hit, (3) DNS round
robin and cache miss, and (4) DNS round robin and cache hit. We show examples for
case | and 4 next; case 2 and 3 can be derived similarly.

In Fig. 2, the origin server is www.origin.com with IP address /.2.3.4 (referred to as
S,), and the rescue server is www.rescue.com with IP address 5.6.7.8 (referred to as S,.).
S, has assigned an alias www-vhl.rescue.comto S,, and S, has added S,.’s IP address

DotSlash: A Self-Configuring and Scalable Rescue System 5

Www.rescue.com
(5.6.78) -
dynamic DNS l

(3) request

(8) reverse proxy request

dynamic DNS | www.origin.com

25678 | Cliew Ccy

(1) www.origin.com (10) response (1) www.origin.com (4) response

(a) For HTTP redirect and cache miss (b) For DNS round robin and cache hit

Fig. 2. Rescue examples

to its round robin local DNS. Fig. 2(a) gives an example for case 1, where client C;
follows a ten-step procedure to retrieve http://www.origin.com/index.htmil:

. Cj resolves S,’s domain name www.origin.com;

. Cy gets S,’s IP address 1.2.3.4;

C; makes an HTTP request to .S, using http://www.origin.com/index.html,

C1 gets an HTTP redirect from S, as http.//www-vhl.rescue.com/index.html;
C| resolves S,.’s alias www-vhl.rescue.com;

C; gets S,’s IP address 5.6.7.8,;

C) makes an HTTP request to S, using http://www-vhl.rescue.com/index.html;
S, makes a reverse proxy request to S, using http.//www.origin.com/index.html
because of a cache miss for http://www-vhl.rescue.com/index.html,

. S, sends the requested file to S,;

10. S, caches the requested file, and returns the file to C;.

P NAU P W

Nel

Fig. 2(b) gives an example for case 4, where client C; follows a four-step procedure
to retrieve http://www.origin.com/index.html:

C, resolves S,’s domain name www.origin.com;

C, gets S,’s IP address 5.6.7.8 due to DNS round robin at S,’s local DNS;
C3 makes an HTTP request to S, using http://www.origin.com/index.html;
C, gets the requested file from S, because of a cache hit.

He 9 1D

4 DotSlash Design

The main focus of DotSlash is to allow a web site to build an adaptive distributed web
server system in a fully automated way. DotSlash consists of dynamic virtual hosting,
request redirection, workload monitoring, rescue control, and service discovery.

4.1 Dynamic Virtual Hosting

Dynamic virtual hosting allows a rescue server to serve the content of its origin servers
on the fly. Existing virtual hosting (e.g., Apache [4]) needs advance configurations:
registering virtual host names in DNS, creating DocumentRoot directories, and adding

6 W. Zhao and H. Schulzrinne

directives to the configuration file to map virtual host names to DocumentRoot directo-
ries. DotSlash handles all these configurations dynamically.

A rescue server generates needed virtual host names dynamically by adding a se-
quence number component to its configured name, e.g., host-vh<seqnum>.domain for
host.domain, where <segnum>> is monotonically increasing. Virtual host names are
registered using A records via dynamic DNS updates [28]. We have set up a domain dot-
slash.net that accepts virtual host name registrations. For example, www.rescue.com can
obtain a unique host name foo in dot-slash.net, and register its virtual host names as foo-
vh<seqgnum>>.dot-slash.net. A rescue server assigns a unique virtual host name to each
of its origin servers, which is used in the HTTP redirects issued from the corresponding
origin server.

As arescue server, www.rescue.com may receive requests using three different kinds
of Host header fields: its configured name www.rescue.com, an assigned virtual host
name such as www-vhl.rescue.com, or an origin server name such as www.origin.com.
Its own content is requested in the first case, whereas the content of its origin servers
is requested in the last two cases. Moreover, the second case is due to HTTP redirects,
and the third case is due to DNS round robin. A rescue server maintains a table to map
assigned virtual host names to its origin servers. To map the Host header field of a
request, a rescue server checks both the virtual host name and the origin server name in
each mapping entry; if either one matches, the origin server name is returned. Due to
client-side caching, web clients may continue to request an origin server’s content from
its old rescue servers. To handle this situation properly, a rescue server does not remove
a mapping entry immediately after the rescue service has been terminated, but rather
keeps the mapping entry for a configured time such as 24 hours, and redirects such a
request back to the corresponding origin server via an HTTP redirect.

A rescue server works as a reverse caching proxy for its origin servers. For example,
when www.rescue.com has a cache miss for http://www-vhl.rescue.com/index.html, it
maps www-vhl.rescue.com to www.origin.com, and issues a reverse proxy request for
http.://www.origin.com/index.html. Using reverse caching proxy offers a few advantages.
First, as files are replicated on demand, the origin server incurs low cost since it does not
need to maintain states for replicated files and can avoid transferring files that are not
requested at the rescue server. Second, as proxy and caching are functions supported by
most web server software, it is simple to use reverse proxying to get needed files, and
use the same caching mechanisms to cache proxied files and local files.

4.2 Request Redirection

Request redirection [8,6,30] allows an origin server to offload client requests to its rescue
servers, which involves two aspects: the mechanisms to offload client requests and the
policies to choose a rescue server among multiple choices. A client request can be redi-
rected by the origin server’s authoritative DNS, the origin server itself, or a redirector at
transport layer (content-blind) or application layer (content-aware). Redirection policies
can be based on load at rescue servers, locality of requested files at rescue servers, and
proximity between the client and rescue servers.

DotSlash uses two mechanisms for request redirections: DNS round robin at the
first level for crude load distribution, and HTTP redirect at the second level for fine-

DotSlash: A Self-Configuring and Scalable Rescue System 7

grained load balancing. DNS round robin can reduce the request arrival rate at the origin
server, and HTTP redirect can increase the service rate of the origin server because an
HTTP redirect is much cheaper to serve than the original content. Both mechanisms can
increase the origin server’s throughput for request handling.

We investigated three options for constructing redirect URIs: IP address, virtual
directory, and virtual host name. Using the rescue server’s IP address can save the
client’s DNS lookup time for the rescue server’s name, but the rescue server is unable
to tell whether a request is for itself or for one of its origin servers. Using a virtual
directory such as /dotslash-vh, http://www.origin.com/index.html can be redirected as
http://www.rescue.com/dotslash-vh/www.origin.com/index.html. The problem is that it
does not work for embedded relative URIs. DotSlash uses virtual host names, which
allows proper virtual hosting at the rescue server, and works for embedded relative
URIs.

In terms of redirection policies, DotSlash uses standard DNS round robin without
modifying the DNS server software, and uses weighted round robin (WRR) for HTTP
redirects, where the weight is the allowed redirect data rate assigned by each rescue
server. Due to factors such as caching and embedded relative URIs, the redirect data
rate seen by the origin server may be different from that served by the rescue server. For
simplicity, an origin server only controls the data rate of redirected files, not including
embedded objects such as images, and relies on a rate feedback from the rescue server
to adjust its redirect data rate (see Section 4.4 for details).

Redirection needs to be avoided for communications between two collaborating
servers and for requests of getting server status information. On one hand, a request
sender (a web client or a web server) needs to bypass DNS round robin by using the
server’s IP address directly in the following cases: when a server initiates a rescue
connection to another server, when a rescue server makes a reverse proxy request to its
origin server, and when a client retrieves a server’s status information. On the other hand,
arequest receiver (i.e., a web server) needs to avoid performing an HTTP redirect if the
request is from a rescue server, or if the request is for the server’s status information.

4.3 Workload Monitoring

Workload monitoring allows a web server to react quickly to load changes. Major Dot-
Slash parameters are summarized in Table 1. We measure the utilization of each resource
at a web server separately. According to a recent study [20], network bandwidth is the
most constrained resource for most web sites during hotspots. We focus on monitoring
network utilization p,, in this paper. We use two configurable parameters, lower threshold
pt, and upper threshold p%, to define three regions for p,: lightly loaded region [0, pL),
desired load region [pf,, p*], and heavily loaded region (p“,100%]. Furthermore, we
define a reference utilization g, as (p, + p*)/2.

In DotSlash, we monitor outbound HT TP traffic within a web server, without relying
on an external module to monitor traffic on the link. We assume there is no significant
other traffic besides HTTP at a web server, and assume a web server has a symmetric
link or its inbound bandwidth is greater than its outbound bandwidth, which is true,
for example, for a web server behind DSL. Since a web server’s outbound data rate

8 W. Zhao and H. Schulzrinne

Table 1. Major DotSlash parameters, where type C is for configurable parameters, type O is for
measured outputs, type I is for control inputs, and type D is for derived parameters

Parameter Description Type
pY, and p* [lower and upper threshold for network utilization, default 50% and 75%| C
AT maximum data rate (kB/s) for outbound HTTP traffic C
T control interval, default 1 second C
a used in exponentially weighted moving average filter, default 0.5 C
Ad real data rate (kB/s) of outbound HTTP traffic (0]
Ard real redirect data rate (kB/s) O
o allowed redirect data rate (kB/s) I
P redirect probability I
Pn network utilization, p, = Aa/A7 D
Pn reference network utilization, g, = (ps + pl,)/2 D
Ad reference data rate (kB/s), g = pn A} D
B adjustment factor for control inputs, 3 = pn/pn D

is normally greater than its inbound data rate, it should be sufficient to only monitor
outbound HTTP traffic.

Due to header overhead (such as TCP and IP headers) and retransmissions, the
HTTP traffic rate monitored by DotSlash is less than the real traffic rate on the link.
Since the header overhead is relatively constant and other overheads are usually small,
to simplify calculation, we use a configurable parameter A\7* to denote the maximum
data rate for outbound HTTP traffic, where A" = BU, B is the network bandwidth,
and U is the percentage of bandwidth that is usable for HTTP traffic. We perform a
special accounting for HTTP redirects because they may account for a large percentage
of HTTP responses and their header overhead is large compared to their small sizes. For
an HTTP redirect response of n bytes, its accounting size A, = (n+ O)U bytes, where
O is the header overhead. A web server sends five TCP packets for each HTTP redirect:
one for establishing the TCP connection, one for acknowledging the HTTP request, one
for sending the HTTP response, and two for terminating the TCP connection. The first
TCP header (SYN ACK) is 40 bytes, and the rest four TCP headers are 32 bytes each.
Thus, O = (40 + 32 % 4) + 20 % 5+ (14 + 4) * 5 = 358 bytes, which includes the TCP
and IP headers, and the Ethernet headers and trailers.

4.4 Rescue Control

Rescue control allows a web server to tune its resource utilization by using rescue actions
that are triggered automatically based on load conditions. To control p,, within the desired
load region [pl,, p%], overload control actions are triggered if p,, > Py, and under-load
control actions are triggered if p,, < pl,. To control the utilization of multiple resources,
overload control actions are triggered if any resource is heavily loaded, and under-load
control actions are triggered if all resources are lightly loaded.

Origin servers and rescue servers use different control parameters. An origin server
controls the redirect probability P, by increasing P, if p,, > p% and decreasing P, if

DotSlash: A Self-Configuring and Scalable Rescue System 9

pn < pl,, whereas a rescue server controls the allowed redirect data rate Ay, for each
of its origin servers by decreasing A?; if p, > pj; and increasing A7, if p, < pL. An
origin server should ensure the real redirect data rate A\,q < A2, but arescue server may
experience Arq > A%,

We use the following control strategies. A configurable parameter 7 denotes the
control interval, which is the smallest time unit for performing workload monitoring and
rescue control. Other time intervals are specified as a multiple of the control interval. To
handle stochastics, we apply an exponentially weighted moving average filter to py,, P,
and \?,. Using py, as an example, p, (k) = ap,(k — 1) 4+ (1 — a)pn(k), where p, (k)
is the current raw measurement, p,, (k) is the filtered value of p,(k), pn(k — 1) is the
previous filtered value, and « is a configurable parameter with a default value 0.5. If
multiple rescue server candidates are available, the one with the largest rescue capacity
should be used first. This policy can help an origin server to keep the number of its rescue
servers as small as possible. Minimizing the number of rescue servers can reduce their
cache misses, and thus reduce the data transfers at the origin server.

The DotSlash rescue protocol (DSRP) is an application-level request-response pro-
tocol using single-line pure text messages. A request has a command string (starting
with a letter) followed by optional parameters, whereas a response has a response code
(three digits) followed by the response string and optional parameters. DSRP defines
three requests: SOS for initiating a rescue relationship, RATE for adjusting a redirect
data rate, and SHUTDOWN for terminating a rescue relationship. An SOS request is
always sent by an origin server, and a RATE request is always sent by a rescue server,
but a SHUTDOWN request may be sent by an origin server or a rescue server. To initiate
a rescue relationship, an origin server sends an SOS request to a chosen rescue server
candidate. The request has the following parameters: the origin server’s fully qualified
domain name, its IP address, and its port number for web requests. When a web server
receives an SOS request, it can accept the request by sending a “200 OK" response or
reject the request by sending a “403 Reject” response. A “200 OK" response has the
following parameters: a unique alias of the rescue server assigned to the origin server,
the rescue server’s IP address, the rescue server’s port number for web requests, and the
allowed redirect data rate that the origin server can offload to the rescue server.

Fig. 3 summarizes DotSlash rescue actions and state transitions. We describe rescue
actions in each state next. The normal state has two rescue actions: initial allocation and
initial rescue. For the first case, if a web server is heavily loaded (i.e., p, > p&), then
it needs to allocate its first rescue server, set P, to 0.5, and switch to the SOS state. For
the second case, if a web server receives a rescue request and it is lightly loaded (i.e.,
pn < pL), then it can accept the rescue request, set A%, to (g, — Pn)A] or a smaller
value determined by a rate allocation policy, and switch to the rescue state.

The SOS state has four rescue actions: increase P,, additional allocation, decrease
P, and release. For the first case, if an origin server is heavily loaded and it has unused
redirect capacity (i.e., Arg < A%,), then it needs to increase P, until P, reaches 1.
For the second case, if an origin server is heavily loaded and it has run out of redirect
capacity (i.e., Arq equals A%), then it needs to allocate an additional rescue server so as
to increase its redirect capacity. For the third case, if an origin server is lightly loaded
and it still redirects requests to rescue servers (i.e., P, > 0), then it needs to decrease

