George Almasi
Calin Cascaval
Peng Wu (Eds.)

Languages and
Compilers for
Parallel Computing

19th International Workshop, LCPC 2006
New Orleans, LA, USA, November 2006
Revised Papers

LNCS 4382

@ Springer

George Almasi Cilin Cascaval
Peng Wu (Eds.)

Languages and
Compilers for
Parallel Computing

19th International Workshop, LCPC 2006
New Orleans, LA, USA. November 2-4, 2006

R AL R R

@ Springer

Volume Editors

George Almasi
Cilin Cagcaval
Peng Wu

IBM Research Division

Thomas J. Watson Research Center

Yorktown Heights, New York 10598

E-mail: {gheorghe, cascaval, pengwu} @us.ibm.com

Library of Congress Control Number: 2007926757

CR Subject Classification (1998): D.3, D.1.3,F.1.2,B.2.1,C.24,C.2,E.1, D4
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-72520-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72520-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12063598 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4382

Preface

The 19th Workshop on Languages and Compilers for Parallel Computing was
held in November 2006 in New Orleans, Louisiana USA. More than 40 researchers
from around the world gathered together to present their latest results and
to exchange ideas on topics ranging from parallel programming models, code
generation, compilation techniques, parallel data structure and parallel execution
models, to register allocation and memory management in parallel environments.

Out of the 49 paper submissions, the Program Committee, with the help of
external reviewers, selected 24 papers for presentation at the workshop. Each
paper had at least three reviews and was extensively discussed in the commit-
tee meeting. The papers were presented in 30-minute sessions at the workshop.
One of the selected papers, while still included in the proceedings, was not pre-
sented because of an unfortunate visa problem that prevented the authors from
attending the workshop.

We were fortunate to have two outstanding keynote addresses at LCPC 2006,
both from UC Berkeley. Kathy Yelick presented “Compilation Techniques for
Partitioned Global Address Space Languages.” In this keynote she discussed
the issues in developing programming models for large-scale parallel machines
and clusters, and how PGAS languages compare to languages emerging from
the DARPA HPCS program. She also presented compiler analysis and optimiza-
tion techniques developed in the context of UPC and Titanium source-to-source
compilers for parallel program and communication optimizations.

David Patterson’s keynote focused on the “Berkeley View: A New Frame-
work and a New Platform for Parallel Research.” He summarized trends in ar-
chitecture design and application development and he discussed how these will
affect the process of developing system software for parallel machines, including
compilers and libraries. He also presented the Research Accelerator for Multi-
ple Processors (RAMP), an effort to develop a flexible, scalable and economical
FPGA-based platform for parallel architecture and programming systems re-
search. Summaries and slides of the keynotes and the program are available
from the workshop Web site http://www.lcpcworkshop.org.

The success of the LCPC 2006 workshop would not have been possible with-
out help from many people. We would like to thank the Program Committee
members for their time and effort in reviewing papers. We wish to thank Gerald
Baumgartner, J. Ramanujam, and P. Sadayappan for being wonderful hosts.
The LCPC Steering Committee, especially David Padua, provided continuous
support and encouragement. And finally, we would like to thank all the authors
who submitted papers to LCPC 2006.

March 2007 Gheorghe Almaési
Calin Cascaval
Peng Wu

Organization

Steering Committee

Utpal Banerjee
David Gelernter
Alex Nicolau
David Padua

Organizing Committee

Intel Corporation

Yale University

University of California, Irvine
University of Illinois, Urbana-Champaign

Program Co-chairs Gheorghe Almasi, IBM Research
Calin Cascaval, IBM Research
Peng Wu, IBM Research
Local Co-chairs Gerald Baumgartner, Louisiana State University
J. Ramanujam, Louisiana State University
P. Sadayappan, Ohio State University

Program Committee

Vikram Adve
Gheorghe Almési
Eduard Ayguad
Gerald Baumgartner
Calin Cagcaval
Rudolf Eigenmann
Maria-Jesus Garzaran
Zhiyuan Li

Sam Midkiff

Paul Petersen

J. Ramanujam

P. Sadayappan

Peng Wu

University of Illinois at Urbana-Champaign
IBM Research

Universitat de Politecnica de Catalunya
Louisiana State University

IBM Research

Purdue University

University of Illinois at Urbana-Champaign
Purdue University

Purdue University

Intel Corp.

Louisiana State University

Ohio State University

IBM Research

Printing: Mercedes-Druck, Berlin
Binding: Stein+Lehmann, Berlin

Lecture Notes in Computer Science

For information about Vols. 1-4382

please contact your bookseller or Springer

Vol. 4515: M. Naor (Ed.), Advances in Cryptology - EU-
ROCRYPT 2007. XIII, 591 pages. 2007.

Vol. 4510: P. Van Hentenryck, L. Wolsey (Eds.), Integra-
tion of Al and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems. X, 391
pages. 2007.

Vol. 4506: D. Zeng, 1. Gotham, K. Komatsu, C. Lynch,
M. Thurmond, D. Madigan, B. Lober, J. Kvach, H.
Chen (Eds.), Intelligence and Security Informatics: Bio-
surveillance. XI, 234 pages. 2007.

Vol. 4504: J. Huang, R. Kowalczyk, Z. Maamar, D.
Martin, 1. Miiller, S. Stoutenburg, K.P. Sycara (Eds.),
Service-Oriented Computing: Agents, Semantics, and
Engineering. X, 175 pages. 2007.

Vol. 4493: D. Liu, S. Fei, Z. Hou, H. Zhang, C. Sun
(Eds.), Advances in Neural Networks — ISNN 2007, Part
III. XX VI, 1215 pages. 2007.

Vol. 4492: D. Liu, S. Fei, Z. Hou, H. Zhang, C. Sun
(Eds.), Advances in Neural Networks — ISNN 2007, Part
II. XXVII, 1321 pages. 2007.

Vol. 4491: D. Liu, S. Fei, Z.-G. Hou, H. Zhang, C. Sun
(Eds.), Advances in Neural Networks — ISNN 2007, Part
L. LIV, 1365 pages. 2007.

Vol. 4486: M. Bernardo, J. Hillston (Eds.), Formal Meth-
ods for Performance Evaluation. VII, 469 pages. 2007.

Vol. 4484: J.-Y. Cai, S.B. Cooper, H. Zhu (Eds.), Theory
and Applications of Models of Computation. XIII, 772
pages. 2007.

Vol. 4483: C. Baral, G. Brewka, J. Schlipf (Eds.), Logic
Programming and Nonmonotonic Reasoning. IX, 327
pages. 2007. (Sublibrary LNAI).

Vol. 4482: A. An, J. Stefanowski, S. Ramanna, C.J. Butz,
W. Pedrycz, G. Wang (Eds.), Rough Sets, Fuzzy Sets,
Data Mining and Granular Computing. XIV, 585 pages.
2007. (Sublibrary LNAI).

Vol. 4481: J. Yao, P. Lingras, W.-Z. Wu, M. Szczuka, N J.

Cercone, D. Slgzak (Eds.), Rough Sets and Knowledge
Technology. XIV, 576 pages. 2007. (Sublibrary LNAI).

Vol. 4480: A. LaMarca, M. Langheinrich, K.N. Truong
(Eds.), Pervasive Computing. XIII, 369 pages. 2007.

Vol. 4479: L.F. Akyildiz, R. Sivakumar, E. Ekici, J.C.d.
Oliveira, J. McNair (Eds.), NETWORKING 2007. Ad
Hoc and Sensor Networks, Wireless Networks, Next
Generation Internet. XX VII, 1252 pages. 2007.

Vol. 4472: M. Haindl, J. Kittler, F. Roli (Eds.), Multiple
Classifier Systems. XI, 524 pages. 2007.

Vol. 4471: P. Cesar, K. Chorianopoulos, J.F. Jensen
(Eds.), Interactive TV: a Shared Experience. XIII, 236
pages. 2007.

Vol. 4470: Q. Wang, D. Pfahl, D.M. Raffo (Eds.), Soft-
ware Process Dynamics and Agility. X1, 346 pages. 2007.

Vol. 4464: E. Dawson, D.S. Wong (Eds.), Information
Security Practice and Experience. XIII, 361 pages. 2007.

Vol. 4463: 1. Mindoiu, A. Zelikovsky (Eds.), Bioinfor-
matics Research and Applications. XV, 653 pages. 2007.
(Sublibrary LNBI).

Vol. 4462: D. Sauveron, K. Markantonakis, A. Bilas, J.-
J. Quisquater (Eds.), Information Security Theory and
Practices. XII, 255 pages. 2007.

Vol. 4459: C. Cérin, K.-C. Li (Eds.), Advances in Grid
and Pervasive Computing. XVI, 759 pages. 2007.

Vol. 4453: T. Speed, H. Huang (Eds.), Research in Com-
putational Molecular Biology. XVI, 550 pages. 2007.
(Sublibrary LNBI).

Vol. 4452: M. Fasli, O. Shehory (Eds.), Agent-Mediated
Electronic Commerce. VIII, 249 pages. 2007. (Subli-
brary LNAI).

Vol. 4451: T.S. Huang, A. Nijholt, M. Pantic, A. Pent-
land (Eds.), Artifical Intelligence for Human Computing.
XVI, 359 pages. 2007. (Sublibrary LNAI).

Vol. 4450: T. Okamoto, X. Wang (Eds.), Public Key
Cryptography — PKC 2007. XIII, 491 pages. 2007.

Vol. 4448: M. Giacobini et al. (Ed.), Applications of Evo-
lutionary Computing. XXIII, 755 pages. 2007.

Vol. 4447: E. Marchiori, J.H. Moore, J.C. Rajapakse
(Eds.), Evolutionary Computation,Machine Learning
and Data Mining in Bioinformatics. XI, 302 pages. 2007.
Vol. 4446: C. Cotta, J. van Hemert (Eds.), Evolutionary
Computation in Combinatorial Optimization. XII, 241
pages. 2007.

Vol. 4445: M. Ebner, M. O’Neill, A. Ekart, L. Vanneschi,
AL Esparcia-Alcazar (Eds.), Genetic Programming. XI,
382 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program

Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.

Vol. 4443: R. Kotagiri, P.R. Krishna, M. Mohania, E.
Nantajeewarawat (Eds.), Advances in Databases: Con-
cepts, Systems and Applications. XXI, 1126 pages. 2007.

Vol. 4440: B. Liblit, Cooperative Bug Isolation. XV, 101
pages. 2007.

Vol. 4439: W. Abramowicz (Ed.), Business Information
Systems. XV, 654 pages. 2007.

Vol. 4438: L. Maicher, A. Sigel, L.M. Garshol (Eds.),
Leveraging the Semantics of Topic Maps. X, 257 pages.
2007. (Sublibrary LNAI).

Vol. 4433: E. Sahin, W.M. Spears, A.F.T. Winfield (Eds.),
Swarm Robotics. XII, 221 pages. 2007.

Vol. 4432: B. Beliczynski, A. Dzielinski, M. Iwanowski,
B. Ribeiro (Eds.), Adaptive and Natural Computing Al-
gorithms, Part IL. XXVI, 761 pages. 2007.

Vol. 4431: B. Beliczynski, A. Dzielinski, M. Iwanowski,
B. Ribeiro (Eds.), Adaptive and Natural Computing Al-
gorithms, Part I. XXV, 851 pages. 2007.

Vol. 4430: C.C. Yang, D. Zeng, M. Chau, K. Chang, Q.
Yang, X. Cheng, J. Wang, F-Y. Wang, H. Chen (Eds.),
Intelligence and Security Informatics. XII, 330 pages.
2007.

Vol. 4429: R. Lu, J.H. Siekmann, C. UlIrich (Eds.), Cog-
nitive Systems. X, 161 pages. 2007. (Sublibrary LNAI).

Vol. 4427: S. Uhlig, K. Papagiannaki, O. Bonaventure
(Eds.), Passive and Active Network Measurement. XI,
274 pages. 2007.

Vol. 4426: Z.-H. Zhou, H. Li, Q. Yang (Eds.), Advances
in Knowledge Discovery and Data Mining. XXV, 1161
pages. 2007. (Sublibrary LNAI).

Vol. 4425: G. Amati, C. Carpineto, G. Romano (Eds.),
Advances in Information Retrieval. XIX, 759 pages.
2007.

Vol. 4424: O. Grumberg, M. Huth (Eds.), Tools and Al-
gorithms for the Construction and Analysis of Systems.
XX, 738 pages. 2007.

Vol. 4423: H. Seidl (Ed.), Foundations of Software Sci-
ence and Computational Structures. XVI, 379 pages.
2007.

Vol. 4422: M.B. Dwyer, A. Lopes (Eds.), Fundamental
Approaches to Software Engineering. XV, 440 pages.
2007.

Vol. 4421: R. De Nicola (Ed.), Programming Languages
and Systems. XVII, 538 pages. 2007.

Vol. 4420: S. Krishnamurthi, M. Odersky (Eds.), Com-
piler Construction. X1V, 233 pages. 2007.

Vol. 4419: P.C. Diniz, E. Marques, K. Bertels, M.M.
Fernandes, J.M.P. Cardoso (Eds.), Reconfigurable Com-
puting: Architectures, Tools and Applications. XIV, 391
pages. 2007.

Vol. 4418: A. Gagalowicz, W. Philips (Eds.), Computer
Vision/Computer Graphics Collaboration Techniques.
XV, 620 pages. 2007.

Vol. 4416: A. Bemporad, A. Bicchi, G. Buttazzo (Eds.),
Hybrid Systems: Computation and Control. XVII, 797
pages. 2007.

Vol. 4415: P. Lukowicz, L. Thiele, G. Troster (Eds.), Ar-
chitecture of Computing Systems - ARCS 2007. X, 297
pages. 2007.

Vol.4414: S. Hochreiter, R. Wagner (Eds.), Bioinformat-
ics Research and Development. XVI, 482 pages. 2007.
(Sublibrary LNBI).

Vol. 4412: F. Stajano, H.J. Kim, J.-S. Chae, S.-D. Kim

(Eds.), Ubiquitous Convergence Technology. XI, 302
pages. 2007.

Vol. 4411: R.H. Bordini, M. Dastani, J. Dix, A.E.F.
Seghrouchni (Eds.), Programming Multi-Agent Sys-
tems. XIV, 249 pages. 2007. (Sublibrary LNAI).

Vol. 4410: A. Branco (Ed.), Anaphora: Analysis, Algo-
rithms and Applications. X, 191 pages. 2007. (Sublibrary
LNAI).

Vol. 4409: J.L. Fiadeiro, P.-Y. Schobbens (Eds.), Recent
Trends in Algebraic Development Techniques. VII, 171
pages. 2007.

Vol. 4407: G. Puebla (Ed.), Logic-Based Program Syn-
thesis and Transformation. VIII, 237 pages. 2007.

Vol. 4406: W. De Meuter (Ed.), Advances in Smalltalk.
VII, 157 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4403: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T
Murata (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XIX, 954 pages. 2007.

Vol. 4401: N. Guelfi, D. Buchs (Eds.), Rapid Integra-
tion of Software Engineering Techniques. IX, 177 pages.
2007.

Vol. 4400: J.F. Peters, A. Skowron, V.W. Marek, E
Ortowska, R. Stowiriski, W. Ziarko (Eds.), Transactions
on Rough Sets VII, Part II. X, 381 pages. 2007.

Vol. 4399: T. Kovacs, X. Llora, K. Takadama, P.L.. Lanzi,
W. Stolzmann, S.W. Wilson (Eds.), Learning Classifiel
Systems. XII, 345 pages. 2007. (Sublibrary LNAI).

Vol. 4398: S. Marchand-Maillet, E. Bruno, A. Niirn-
berger, M. Detyniecki (Eds.), Adaptive Multimedia Re-
trieval: User, Context, and Feedback. XI, 269 pages
2007.

Vol. 4397: C. Stephanidis, M. Pieper (Eds.), Universal
Access in Ambient Intelligence Environments. XV, 467
pages. 2007.

Vol. 4396: J. Garcia-Vidal, L. Cerda-Alabern (Eds.).
Wireless Systems and Mobility in Next Generation In-
ternet. IX, 271 pages. 2007.

Vol. 4395: M. Daydé, JM.LM. Palma, AL.GA
Coutinho, E. Pacitti, J.C. Lopes (Eds.), High Perfor-
mance Computing for Computational Science - VEC-
PAR 2006. XXIV, 721 pages. 2007.

Vol. 4394: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVI, 648 pages. 2007.
Vol. 4393: W. Thomas, P. Weil (Eds.), STACS 2007.
XVIII, 708 pages. 2007.

Vol. 4392: S.P. Vadhan (Ed.), Theory of Cryptography
XI, 595 pages. 2007.

Vol. 4391: Y. Stylianou, M. Faundez-Zanuy, A. Espositc
(Eds.), Progress in Nonlinear Speech Processing. XII,
269 pages. 2007.

Vol. 4390: S.O. Kuznetsov, S. Schmidt (Eds.), For-
mal Concept Analysis. X, 329 pages. 2007. (Sublibrary
LNAI).

Vol. 4389: D. Weyns, H.V.D. Parunak, F. Michel (Eds.)
Environments for Multi-Agent Systems III. X, 273
pages. 2007. (Sublibrary LNAI).

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.).
Task Models and Diagrams for Users Interface Design
XI, 355 pages. 2007.

Vol. 4384: T. Washio, K. Satoh, H. Takeda, A. Inokuchi
(Eds.), New Frontiers in Artificial Intelligence. IX, 401
pages. 2007. (Sublibrary LNAI).

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware anc
Software, Verification and Testing. XII, 235 pages. 2007

Table of Contents

Keynote 1

Compilation Techniques for Partitioned Global Address Space
LATIEUIAGES « 5 v w555 95 @55 %5 555 w5 6 5.5 (5 510 wms 2 00 s 1 2 m im0 e e it s msormt o io o 01 o 1o 0 1
Kathy Yelick

Session 1: Programming Models

Can Transactions Enhance Parallel Programs? 2
Troy A. Johnson, Sang-Ik Lee, Seung-Jai Min, and
Rudolf Eigenmann

Design and Use of htalib — A Library for Hierarchically Tiled Arrays ... 17

Ganesh Bikshandi, Jia Guo, Christoph von Praun, Gabriel Tanase,
Basilio B. Fraguela, Maria J. Garzardn, David Padua, and
Lawrence Rauchwerger

SPQCE - An SP-Based Programming Model for Consumer Electronics
Streaming Applicationsttt 33
Ana Lucia Varbanescu, Maik Nijhuis, Arturo Gonzdlez- Escribano,
Henk Sips, Herbert Bos, and Henrt Bal

Session 2: Code Generation

Data Pipeline Optimization for Shared Memory Multiple-SIMD
Architecture. 49
Wethua Zhang, Tao Bao, Binyu Zang, and Chuanqgi Zhu

Dependence-Based Code Generation for a CELL Processor 64
Yuan Zhao and Ken Kennedy

Expression and Loop Libraries for High-Performance Code Synthesis . . . 80
Christopher Mueller and Andrew Lumsdaine

Applying Code Specialization to FFT Libraries for Integral
Parameters. 96
Minhaj Ahmad Khan and Henri-Pierre Charles

Session 3: Parallelism

A Characterization of Shared Data Access Patterns in UPC
Programs 111
Christopher Barton, Calin Cascaval, and José Nelson Amaral

VIII Table of Contents

Exploiting Speculative Thread-Level Parallelism in Data Compression
ApPPlCations.ot 126
Shengyue Wang, Antonia Zhai, and Pen-Chung Yew

On Control Signals for Multi-Dimensional Time. 141
DaeGon Kim, Gautam, and S. Rajopadhye

Keynote 11

The Berkeley View: A New Framework and a New Platform for Parallel
ReSeATICH 55 svs o musnmis s 250 B 618 5 5 ErSm 546 S £ 508) S AUSEAE § BIEEE Vvl GO 156
David Patterson

Session 4: Compilation Techniques

An Effective Heuristic for Simple Offset Assignment with Variable
COAleSCING .« . o ittt et e e e 158
Hassan Salamy and J. Ramanujam

Iterative Compilation with Kernel Exploration....................... 173
D. Barthou, S. Donadio, A. Duchateau, W. Jalby, and E. Courtois

Quantifying Uncertainty in Points-To Relations 190
Constantino G. Ribeiro and Marcelo Cintra

Session 5: Data Structures

Cache Behavior Modelling for Codes Involving Banded Matrices 205
Diego Andrade, Basilio B. Fraguela, and Ramon Doallo

Tree-Traversal Orientation Analysis i, 220
Kevin Andrusky, Stephen Curial, and José Nelson Amaral

UTS: An Unbalanced Tree Search Benchmark 235
Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan,
P. Sadayappan, and Chau-Wen Tseng

Session 6: Register Allocation

Copy Propagation Optimizations for VLIW DSP Processors with
Distributed Register Files i 251
Chung-Ju Wu, Sheng-Yuan Chen, and Jeng-Kuen Lee

Optimal Bitwise Register Allocation Using Integer Linear

Programming. i 267
Ragkishore Barik, Christian Grothoff, Rahul Gupta,
Vinayaka Pandit, and Raghavendra Udupa

Table of Contents

Register Allocation: What Does the NP-Completeness Proof of Chaitin
et al. Really Prove? Or Revisiting Register Allocation: Why and How. ..
Florent Bouchez, Alain Darte, Christophe Guillon, and
Fabrice Rastello

Session 7: Memory Management

Custom Memory Allocation for Free...........
Alin Jula and Lawrence Rauchwerger

Optimizing the Use of Static Buffers for DMA on a CELL Chip........
Tong Chen, Zehra Sura, Kathryn O’Brien, and John K. O’Brien

Runtime Address Space Computation for SDSM Systems
Jairo Balart, Marc Gonzalez, Xavier Martorell,
Eduard Ayguadé, and Jesus Labarta

A Static Heap Analysis for Shape and Connectivity: Unified Memory
Analysis: The Base Framework
Mark Marron, Deepak Kapur, Darko Stefanovic, and
Manuel Hermenegildo

Author IndexXot

IX

283

Compilation Techniques for Partitioned Global
Address Space Languages

Kathy Yelick

EECS Department, UC Berkeley
Computational Research Division, Lawrence Berkeley National Lab

Abstract. Partitioned global address space (PGAS) languages have
emerged as a viable alternative to message passing programming mod-
els for large-scale parallel machines and clusters. They also offer an al-
ternative to shared memory programming models (such as threads and
OpenMP) and the possibility of a single programming model that will
work well across a wide range of shared and distributed memory plat-
forms. Although the major source of parallelism in these languages is
managed by the application programmer, rather than being automati-
cally discovered by a compiler, there are many opportunities for program
analysis to detect programming errors and for performance optimizations
from the compiler and runtime system. The three most mature PGAS
languages (UPC, CAF and Titanium) offer a statically partitioned global
address space with a static SPMD control model, while languages emerg-
ing from the DARPA HPCS program are more dynamic.

In this talk I will describe some of the analysis and optimizations
techniques used in the Berkeley UPC and Titanium compilers, both of
which source-to-source translators based on a common runtime system.
Both compilers are publicly released and run on most serial, parallel, and
cluster platforms. Building on the strong typing of the underlying Java
language, the Titanium compiler includes several forms of type-based
analyses for both error detection and to enable code transformations.
The Berkeley UPC compiler extends the Open64 analysis framework on
which it is built to handle the language features of UPC. Both compilers
perform communication optimizations to overlap, aggregate, and sched-
ule communication, as well as pointer localization, and other optimiza-
tions on parallelism constructs in the language. The HPCS languages
can use some of the implementation techniques of the older PGAS lan-
guages, but offer new opportunities for expressiveness and suggest new
open questions related to compiler and runtime support, especially as
machines scale towards a petaflop.

G. Almasi, C. Cagcaval, and P. Wu (Eds.): LCPC 2006, LNCS 4382, p. 1, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Can Transactions Enhance Parallel Programs?*

Troy A. Johnson, Sang-Ik Lee, Seung-Jai Min, and Rudolf Eigenmann

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907
{troyj, sangik, smin, eigenman}@purdue.edu

Abstract. Transactional programming constructs have been proposed
as key elements of advanced parallel programming models. Currently,
it is not well understood to what extent such constructs enable efficient
parallel program implementations and ease parallel programming beyond
what is possible with existing techniques. To help answer these questions,
we investigate the technology underlying transactions and compare it to
existing parallelization techniques. We also consider the most important
parallelizing transformation techniques and look for opportunities to fur-
ther improve them through transactional constructs or — vice versa — to
improve transactions with these transformations. Finally, we evaluate
the use of transactions in the SPEC OMP benchmarks.

1 Transaction-Supported Parallel Programming Models

Although a large number of parallel programming models have been proposed
over the last three decades, there are reasons to continue the search for better
models. Evidently, the ideal model has not yet been discovered; creating pro-
grams for parallel machines is still difficult, error-prone, and costly. Today, the
importance of this issue is increasing because all computer chips likely will in-
clude parallel processors within a short period of time. In fact, some consider
finding better parallel programming models one of today’s most important re-
search topics. Models are especially needed for non-numerical applications, which
typically are more difficult to parallelize.

1.1 Can Transactions Provide New Solutions?

Recently, programming models that include transactional constructs have re-
ceived significant attention [1,4,12,15]. At a high level, transactions are optimisti-
cally executed atomic blocks. The effect of an atomic block on the program state
happens at once; optimistic execution means that multiple threads can execute
the block in parallel, as long as some mechanism ensures atomicity. To this end,
both hardware and software solutions have been proposed. An interesting obser-
vation is that these contributions make few references to technology in languages
and compilers for parallel computing. These omissions are puzzling because the

* This work is supported in part by the National Science Foundation under Grants
No. 0103582-EIA, and 0429535-CCF.

G. Almasi, C. Cascaval, and P. Wu (Eds.): LCPC 2006, LNCS 4382, pp. 2-16, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Can Transactions Enhance Parallel Programs? 3

two topics pursue the same ultimate goal: making parallel programming easier
and more efficient. While the programming models are arguably different, both
areas need advanced compiler, run-time, and hardware optimization techniques.
Hence, one expects that the underlying techniques supporting these models are
closely related. In this paper, we investigate these relationships. We examine
how much the concept of transactions can improve parallel program design and
implementation beyond existing technology and to what extent transactions are
just an interesting new way of looking at the same problem. We also review the
ability of existing technology to optimize the implementation of transactions.

1.2 The Promise of Programming with Transactions

How can transactional constructs improve parallel programs? A transaction, in
its basic meaning, is simply a set of instructions and memory operations. In
many situations (e.g., in databases and parallel programming) it is important
that the transactions are performed in such a way that their effects become visi-
ble simultaneously, or atomically. For example, in a bank, it is important that an
amount of money gets deducted from one account and put into the other atom-
ically, so that the total balance remains invariant at all times. Similarly, when
incrementing a counter by two parallel threads, it is important that reading,
modifying, and writing the counter be done atomically.

The concept of atomicity is not new per se. Constructs such as semaphores [5],
locks [22], and critical sections [11] have been known for a long time. Neverthe-
less, language constructs that express atomicity typically allow only single mem-
ory updates (e.g., the OpenMP [21] atomic directive). Blocks of atomic memory
operations are expressed through critical sections, which prevent concurrent ex-
ecution of the block. This implementation is conservative or “pessimistic.” The
new promise of transactions is to eliminate some of the disadvantages that come
with state-of-the-art constructs, namely reducing overhead through “optimistic
execution” (if threads end up not accessing the same data inside a critical sec-
tion, they should execute concurrently) and managing locks (avoiding deadlock
and bookkeeping of multiple locks). These overheads naturally occur, as pro-
grams are written conservatively. For example, a banking software engineer may
protect all account operations with one critical section, even though it could be
known, in some cases, that the operations happen to different classes of accounts.
The engineer may optimize the accounting software by creating separate locks
for the two account classes; however, this increases the amount of bookkeeping
information and requires more effort to avoid deadlocks.

The new idea behind transactions is that the programmer can rely on an ef-
ficient execution mechanism that executes in parallel whenever possible. Thus,
the programmer uses the same “critical section” everywhere by simply writing
atomic. At run time, two account operations or loop-counter updates can oc-
cur simultaneously. If different accounts are accessed or different counters are
updated, then the program continues normally; if the same account or same
counter is updated, then the transaction’s implementation properly orders the
operations. It is the transaction implementation’s responsibility to provide

4 T.A. Johnson et al.

efficient mechanisms for detecting when concurrency is possible and for serializ-
ing the operations when necessary.

Two questions arise: (i) Are transactions an adequate user model, and (ii)
can transactions be implemented efficiently? Although the idea of an atomic lan-
guage construct is not new [20], only time and experience can answer whether
programmers find transactions useful. Today, only few real programs have been
written with transactional constructs. An important challenge is that much par-
allel programming experience exists in the area of numerical programs; however,
transactions aim at all classes of programs. The second question is the focus of
this paper. Our thesis is that the technology underlying efficient transactions is
very similar to the one that exists today for program parallelization — paralleliz-
ing compiler techniques [3,9], implementation techniques of parallel language
constructs [18], and hardware techniques for speculative parallelization [8,10].
The ultimate question for the language and compiler community is whether or
not we have missed something that we can now learn from the ideas behind trans-
actional constructs. If so, we may be able to incorporate that new knowledge
into our compilers, run-time systems, and supporting hardware.

2 Comparing the Technology Underlying Transactions
and Program Parallelization

2.1 Technology Underlying Transactions

Within transactions, threads that do not conflict should execute in parallel unhin-
dered. Conflict detection is therefore at the heart of implementation technology
for transactions. Conflict detection can be performed statically or dynamically.
Static conflict detection relies on the compiler’s ability to tell that threads ac-
cess disjoint data. Provably non-conflicting threads can execute safely in parallel
without the guard of a transaction; the compiler can remove the transaction al-
together. The compiler also may remove conflict-free code out of the transaction,
hence narrowing the guarded section. This optimization capability is important
because it allows the programmer to insert transactions at a relatively coarse
level and rely on the compiler’s ability to narrow them to the smallest possible
width. Furthermore, if a compiler can identify instructions that always conflict,
it may guard these sections directly with a classical critical section. Applying
common data dependence tests for conflict resolution is not straightforward, as
conflicts among all transactions must be considered. For strong atomicity [4] this
analysis is even necessary between transactions and all other program sections.
Note that common data-dependence tests attempt to prove independence, not
dependence; i.e., failure to prove independence does not imply dependence.
Compile-time solutions are highly efficient because they avoid run-time over-
head. Nevertheless, their applicability is confined to the range of compile-time
analyzable programs. Often, these are programs that manipulate large, regular
data sets — typically found in numerical applications. Compile-time conflict res-
olution is difficult in programs that use pointers to manipulate dynamic data
structures, which is the case for a large number of non-numerical programs.

Can Transactions Enhance Parallel Programs? 5

For threads that are not provably conflict-free, the compiler still can assist by
narrowing the set of addresses that may conflict. At run time, this conflict set
must be monitored. The monitoring can happen either through compiler-inserted
code (e.g., code that logs every reference) or through interpreters (e.g., virtual
machines). At the end of the transaction, the logs are inspected for possible con-
flicts; in the event of a conflict, the transaction is rolled back and re-executed.
Rollback must undo all modifications and can be accomplished by redirecting
all write references to a temporary buffer during the transaction. The buffer is
discarded upon a rollback; a successful transaction commits the buffer to the
real address space. Again, interpreters may perform this redirection of addresses
and the final commit operation on-the-fly. Evidently, there is significant over-
head associated with software implementations of transactions, giving rise to
optimization techniques [1,12].

Fully dynamic implementations of transactions perform conflict detection,
rollback and commit in hardware. During the execution of a transaction, data
references are redirected to a temporary buffer and monitored for conflicts with
other threads’ buffers. Detected conflicts cause a rollback, whereby the buffer
is emptied and threads are restarted. At the end of a successful, conflict-free
transaction, the thread’s buffer is committed. Conflict detection in hardware is
substantially faster than software solutions, but still adds extra cycles to every
data reference. The cost of a rollback is primarily in the wasted work attempting
the transaction. Commit operations may be expensive, if they immediately copy
the buffered data (for speculative parallelization, hardware schemes have been
proposed to commit in a non-blocking style, without immediate copy [24]). An
important source of overhead stems from the size of the buffer. While small
hardware buffers enable fast conflict detection, they may severely limit the size
of a transaction that can be executed. If the buffer fills up during a transaction,
parallel execution stalls.

2.2 Technology Underlying Program Parallelization

A serial program region can be executed in parallel if it can be divided into
multiple threads that access disjoint data elements. Implementing this concept
requires techniques analogous to the ones in Section 2.1. There are compile-time,
compiler-assisted run-time, and hardware solutions.

Compile-time parallelization. Data-dependence analysisis at the heart of compile-
time, automatic parallelization. Provably independent program sections can be
executed as fully parallel threads. The analysis is the same as what is needed for
conflict detection of transactions. Data-dependence tests have proven most suc-
cessful in regular, numerical applications; data dependence analysis in the presence
of pointers [13] is still a largely unsolved problem. Where successful, automatic par-
allelization is highly efficient, as it produces fully-parallel sections, avoiding run-
time overheads.

Run-time data-dependence tests. These tests 23] have been introduced to defer
the detection of parallelism from compile time to run time, where the actual data

>

